導航:首頁 > 股票股吧 > 分布式資料庫

分布式資料庫

發布時間:2021-08-09 18:35:54

㈠ 分布式資料庫系統

分布式資料庫系統(DDBS)包含分布式資料庫管理系統(DDBMS)和分布式資料庫(DDB)。在分布式資料庫系統中,一個應用程序可以對資料庫進行透明操作,資料庫中的數據分別在不同的局部資料庫中存儲、由不同的 DBMS進行管理、在不同的機器上運行、由不同的操作系統支持、被不同的通信網路連接在一起。
一個分布式資料庫在邏輯上是一個統一的整體,在物理上則是分別存儲在不同的物理節點上。一個應用程序通過網路的連接可以訪問分布在不同地理位置的資料庫。它的分布性表現在資料庫中的數據不是存儲在同一場地。更確切地講,不存儲在同一計算機的存儲設備上。這就是與集中式資料庫的區別。從用戶的角度看,一個分布式資料庫系統在邏輯上和集中式資料庫系統一樣,用戶可以在任何一個場地執行全局應用。就好像那些數據是存儲在同一台計算機上,有單個資料庫管理系統(DBMS)管理一樣,用戶並沒有什麼感覺不一樣。
分布式資料庫系統是在集中式資料庫系統的基礎上發展起來的,是計算機技術和網路技術結合的產物。分布式資料庫系統適合於單位分散的部門,允許各個部門將其常用的數據存儲在本地,實施就地存放本地使用,從而提高響應速度,降低通信費用。分布式資料庫系統與集中式資料庫系統相比具有可擴展性,通過增加適當的數據冗餘,提高系統的可靠性。在集中式資料庫中,盡量減少冗餘度是系統目標之一.其原因是,冗餘數據浪費存儲空間,而且容易造成各副本之間的不一致性.而為了保證數據的一致性,系統要付出一定的維護代價.減少冗餘度的目標是用數據共享來達到的。而在分布式資料庫中卻希望增加冗餘數據,在不同的場地存儲同一數據的多個副本,其原因是:①.提高系統的可靠性、可用性當某一場地出現故障時,系統可以對另一場地上的相同副本進行操作,不會因一處故障而造成整個系統的癱瘓。②.提高系統性能系統可以根據距離選擇離用戶最近的數據副本進行操作,減少通信代價,改善整個系統的性能。

㈡ 什麼是分布式資料庫

分布式軟體系統(Distributed Software Systems)是支持分布式處理的軟體系統,是在由通信網路互聯的多處理機體系結構上執行任務的系統。它包括分布式操作系統、分布式程序設計語言及其編譯(解釋)系統、分布式文件系統和分布式資料庫系統等。

分布式操作系統負責管理分布式處理系統資源和控制分布式程序運行。它和集中式操作系統的區別在於資源管理、進程通信和系統結構等方面。

分布式程序設計語言用於編寫運行於分布式計算機系統上的分布式程序。一個分布式程序由若干個可以獨立執行的程序模塊組成,它們分布於一個分布式處理系統的多台計算機上被同時執行。它與集中式的程序設計語言相比有三個特點:分布性、通信性和穩健性。

分布式文件系統具有執行遠程文件存取的能力,並以透明方式對分布在網路上的文件進行管理和存取。

分布式資料庫系統由分布於多個計算機結點上的若干個資料庫系統組成,它提供有效的存取手段來操縱這些結點上的子資料庫。分布式資料庫在使用上可視為一個完整的資料庫,而實際上它是分布在地理分散的各個結點上。當然,分布在各個結點上的子資料庫在邏輯上是相關的。

---------------

分布式資料庫系統是由若干個站集合而成。這些站又稱為節點,它們在通訊網路中聯接在一起,每個節點都是一個獨立的資料庫系統,它們都擁有各自的資料庫、中央處理機、終端,以及各自的局部資料庫管理系統。因此分布式資料庫系統可以看作是一系列集中式資料庫系統的聯合。它們在邏輯上屬於同一系統,但在物理結構上是分布式的。

分布式資料庫系統已經成為信息處理學科的重要領域,正在迅速發展之中,原因基於以下幾點:

1、它可以解決組織機構分散而數據需要相互聯系的問題。比如銀行系統,總行與各分行處於不同的城市或城市中的各個地區,在業務上它們需要處理各自的數據,也需要彼此之間的交換和處理,這就需要分布式的系統。

2、如果一個組織機構需要增加新的相對自主的組織單位來擴充機構,則分布式資料庫系統可以在對當前機構影響最小的情況下進行擴充。

3、均衡負載的需要。數據的分解採用使局部應用達到最大,這使得各處理機之間的相互干擾降到最低。負載在各處理機之間分擔,可以避免臨界瓶頸。

4、當現有機構中已存在幾個資料庫系統,而且實現全局應用的必要性增加時,就可以由這些資料庫自下而上構成分布式資料庫系統。

5、相等規模的分布式資料庫系統在出現故障的幾率上不會比集中式資料庫系統低,但由於其故障的影響僅限於局部數據應用,因此就整個系統來講它的可靠性是比較高的。

特點

1、在分布式資料庫系統里不強調集中控制概念,它具有一個以全局資料庫管理員為基礎的分層控制結構,但是每個局部資料庫管理員都具有高度的自主權。

2、在分布式資料庫系統中數據獨立性概念也同樣重要,然而增加了一個新的概念,就是分布式透明性。所謂分布式透明性就是在編寫程序時好象數據沒有被分布一樣,因此把數據進行轉移不會影響程序的正確性。但程序的執行速度會有所降低。

3、集中式資料庫系統不同,數據冗餘在分布式系統中被看作是所需要的特性,其原因在於:首先,如果在需要的節點復制數據,則可以提高局部的應用性。其次,當某節點發生故障時,可以操作其它節點上的復制數據,因此這可以增加系統的有效性。當然,在分布式系統中對最佳冗餘度的評價是很復雜的。

分布式系統的類型,大致可以歸為三類:

1、分布式數據,但只有一個總? 據庫,沒有局部資料庫。

2、分層式處理,每一層都有自己的資料庫。

3、充分分散的分布式網路,沒有中央控制部分,各節點之間的聯接方式又可以有多種,如鬆散的聯接,緊密的聯接,動態的聯接,廣播通知式聯接等。

---------------------

什麼是分布式智能?
NI LabVIEW 8的分布式智能結合了相關的技術和工具,解決了分布式系統開發會碰到的一些挑戰。更重要的是,NI LabVIEW 8的分布式智能提供的解決方案不僅令這些挑戰迎刃而解,且易於實施。LabVIEW 8的分布式智能具體包括:

可對分布式系統中的所有結點編程——包括主機和終端。尤為可貴的是,您可以利用LabVIEW圖形化編程方式,對大量不同類型的對象進行編程,如桌面處理器、實時系統、FPGA、PDA、嵌入式微處理器和DSP。
導航所有系統結點的查看系統——LabVIEW Project Explorer。您可使用Project Explorer查看、編輯、運行和調試運行於任何對象上的結點。
經簡化的數據共享編程界面——共享變數。使用共享變數,您可輕松地在系統間(甚至實時系統間)傳輸數據且不影響性能。無通信循環,無RT FIFO,無需低層次TCP函數。您可以利用簡單的對話完成共享變數的配置,從而將數據在各系統間傳輸或將數據連接到不同的數據源。您還可添加記錄、警報、事件等數據服務――一切僅需簡單的對話即可完成。
實現了遠程設備及系統內部或設備及系統之間的同步操作——定時和同步始終是定義高性能測量和控制系統的關鍵問題。利用基於NI技術的系統,探索設備內部並編寫其內部運行機制,從而取得比傳統儀器或PLC方式下更為靈活的解決方案。

--------------------

在分布式計算機操作系統支持下,互連的計算機可以互相協調工作,共同完成一項任務。

也可以這么解釋:
一種計算機硬體的配置方式和相應的功能配置方式。它是一種多處理器的計算機系統,各處理器通過互連網路構成統一的系統。系統採用分布式計算結構,即把原來系統內中央處理器處理的任務分散給相應的處理器,實現不同功能的各個處理器相互協調,共享系統的外設與軟體。這樣就加快了系統的處理速度,簡化了主機的邏輯結構.

易游貝貝祝你好運

㈢ 有哪些分布式資料庫,實現最終一致性的

可以關注下國產分布式資料庫 TiDB,由於實現原理的原因,tidb 天生數據強一致性。TiDB 社區(AskTUG)

㈣ 大數據的分布式資料庫的發展趨勢如何

現在大數據是一個十分火熱的技術,這也使得很多人都開始關注大數據的任何動態,因為大數據在某種程度上來說能夠影響我們的生活。在這篇文章中我們就給大家介紹一下大數據的分布式資料庫的發展趨勢,希望這篇文章能夠幫助大家更好理解大數據的分布式資料庫的發展趨勢。
其實不論是Hadoop還是分布式資料庫,技術體繫上兩者都已經向著計算存儲層分離的方式演進。對於Hadoop來說這一趨勢非常明顯,HDFS存儲與YARN調度計算的分離,使得計算與存儲均可以按需橫向擴展。而分布式資料庫近年來也在遵循類似的趨勢,很多資料庫已經將底層存儲與上層的SQL引擎進行剝離。傳統的XML資料庫、OO資料庫、與pre-RDBMS正在消亡;新興領域文檔類資料庫、圖資料庫、Table-Style資料庫與Multi-Model資料庫正在擴大自身影響;傳統關系型資料庫、列存儲資料庫、內存分析型資料庫正在考慮轉型。可以看到,從技術完整性與成熟度來看,Hadoop確實還處於相對早期的形態。直到今天,很多技術在很多企業應用中需要大量的手工調優才能夠勉強運行。同時,Hadoop的主要應用場景一直以來面向批處理分析型業務,傳統資料庫在線聯機處理部分不是其主要的發展方向。同時Hadoop技術由於開源生態體系過於龐大,同時參與改造的廠商太多,使得用戶很難完全熟悉整個體系,這一方面大大增加了開發的復雜度,提升了用戶使用的難度,另一方面則是各個廠商之間維護不同版本,使得產品的發展方向可能與開源版本差別逐漸加大。
而分布式資料庫領域經歷了幾十年的磨練,傳統RDBMS的MPP技術早已經爐火純青,在分類眾多的分布式資料庫中,其主要發展方向基本可以分為「分布式聯機資料庫」與「分布式分析型資料庫」兩種。對比Hadoop與分布式資料庫可以看出,Hadoop的產品發展方向定位,與分布式資料庫中列存儲資料庫相當重疊而在高並發聯機交易場景,在Hadoop中除了HBase能夠勉強沾邊以外,分布式資料庫則占據絕對的優勢。目前,從Hadoop行業的發展來看,很多廠商而是將其定位改變為數據科學與機器學習服務商。因此,從商業模式上看以Hadoop分銷的商業模式基本已經宣告結束,用戶已經體驗到維護整個Hadoop平台的困難而不願被強迫購買整個平台。大量用戶更願意把原來Hadoop的部件拆開靈活使用,為使用場景和結果買單,而非平台本身買單。另外一個細分市場——非結構化小文件存儲,一直以來都是對象存儲、塊存儲,與分布式文件系統的主戰場。如今,一些新一代資料庫也開始進入該領域,可以預見在未來的幾年中,小型非結構化文件存儲也可能成為具備多模數據處理能力的分布式資料庫的戰場之一。
我們在這篇文章中給大家介紹了很多有關大數據分布資料庫的發展前景,通過這篇文章我們不難發現資料庫的發展是一個極其重要的內容,只有搭建分布式資料庫,大數據才能夠更好地為我們服務。

㈤ 什麼是分布式資料庫,有什麼特點

定義:
分布式資料庫是指利用高速計算機網路將物理上分散的多個數據存儲單元連接起來組成一個邏輯上統一的資料庫。分布式資料庫的基本思想是將原來集中式資料庫中的數據分散存儲到多個通過網路連接的數據存儲節點上,以獲取更大的存儲容量和更高的並發訪問量。近年來,隨著數據量的高速增長,分布式資料庫技術也得到了快速的發展,傳統的關系型資料庫開始從集中式模型向分布式架構發展,基於關系型的分布式資料庫在保留了傳統資料庫的數據模型和基本特徵下,從集中式存儲走向分布式存儲,從集中式計算走向分布式計算。
特點:
1.高可擴展性:分布式資料庫必須具有高可擴展性,能夠動態地增添存儲節點以實現存儲容量的線性擴展。
2 高並發性:分布式資料庫必須及時響應大規模用戶的讀/寫請求,能對海量數據進行隨機讀/寫。
3. 高可用性:分布式資料庫必須提供容錯機制,能夠實現對數據的冗餘備份,保證數據和服務的高度可靠性。

㈥ 分布式資料庫的工作原理是什麼

分布式數據有不同的理論支撐,TiDB 官方社區(AskTUG)


目前國產數據排名靠前的可以了解下 TiDB

㈦ 大數據的分布式資料庫技術的對比

大數據技術的實現離不開很多其他的技術,我們提到最多的就是Hadoop技術,其實就目前而言,Hadoop技術看似是自成一套體系,其實並不是這樣的,Hadoop和Spark以及分布式資料庫其實也是存在差異的,我們就在這篇文章中給大家介紹一下這些內容。
首先我們說一說大數據分析,現在的大數據分析體系以Hadoop生態為主,而近年來逐漸火熱的Spark技術也是主要的生態之一。可以這么說,Hadoop技術只能算是以HDFS+YARN作為基礎的分布式文件系統,而不是資料庫。我們提到的Hadoop的歷史可以向前追溯10年,當年穀歌為了在幾萬台PC伺服器上構建超大數據集合並提供極高性能的並發訪問能力,從而發明了一種新的技術,而這個技術,也是Hadoop誕生的理論基礎。如果我們從Hadoop的誕生背景可以看出,其主要解決的問題是超大規模集群下如何對非結構化數據進行批處理計算。實際上,在Hadoop架構中,一個分布式任務可以是類似傳統結構化數據的關聯、排序、聚集操作,也可以是針對非結構化數據的用戶自定義程序邏輯。
那麼Hadoop的發展道路是什麼樣的呢。最開始的Hadoop以Big、Hive和MapRece三種開發介面為代表,分別適用於腳本批處理、SQL批處理以及用戶自定義邏輯類型的應用。而Spark的發展更是如此,最開始的SparkRDD幾乎完全沒有SQL能力,還是套用了Hive發展出的Shark才能對SQL有了一部分的支持。但是,隨著企業用戶對Hadoop的使用越發廣泛,SQL已經漸漸成為大數據平台在傳統行業的主要訪問方式之一。
下面我們就說一說分布式資料庫,分布式資料庫有著悠久的歷史,從以Oracle RAC為代表的聯機交易型分布式資料庫,到IBM DB2 DPF統計分析性分布式資料庫,分布式資料庫覆蓋了OLTP與OLAP幾乎全部的數據應用場景。而大部分分布式資料庫功能集中在結構化計算與在線增刪改查上。但是,這些傳統的分布式資料庫以數倉及分析類OLAP系統為主,其局限性在於,其底層的關系型資料庫存儲結構在效率上並不能滿足大量高並發的數據查詢以及大數據數據加工和分析的效率要求。因此,分布式資料庫在近幾年也有著極大的轉型,從單一的數據模型向多模的數據模型轉移,將OLTP、聯機高並發查詢以及支持大數據加工和分析結合起來,不再單獨以OLAP作為設計目標。同時,分布式資料庫在訪問模式上也出現了K/V、文檔、寬表、圖等分支,支持除了SQL查詢語言之外的其他訪問模式,大大豐富了傳統分布式資料庫單一的用途。一般來說,多模資料庫的主要目的是為了滿足具有高性能要求的操作型需求以及目標明確的數據倉庫功能,而不是類似大數據深度學習等數據挖掘場景。這就是分布式資料庫的實際情況。
我們在這篇文章中給大家介紹了大數據分析以及分布式資料庫的相關知識,通過這些內容相信大家已經理解了其中的具體區別了吧,如果這篇文章能夠幫助到大家這就是我們最大的心願。

㈧ 什麼叫分布式資料庫

1.分布式資料庫是資料庫的一種,是資料庫技術和網路技術的結合產物。

2.各有優點和缺點.分布式資料庫分為邏輯上分部物理上分布及邏輯上分布物理上集中兩種。

是的,分布式數據文件便於資料庫的管理維護。

㈨ 分布式資料庫是做什麼的

1.分布式資料庫是資料庫的一種,是資料庫技術和網路技術的結合產物。
2.各有優點和缺點.分布式資料庫分為邏輯上分部物理上分布及邏輯上分布物理上集中兩種。
是的,分布式數據文件便於資料庫的管理維護。
分布式資料庫系統通常使用較小的計算機系統,每台計算機可單獨放在一個地方,每台計算機中都有DBMS的一份完整拷貝副本,並具有自己局部的資料庫,位於不同地點的許多計算機通過網路互相連接,共同組成一個完整的、全局的大型資料庫。
這種組織資料庫的方法克服了物理中心資料庫組織的弱點。
1、首先,降低了數據傳送代價,因為大多數的對資料庫的訪問操作都是針對局部資料庫的,而不是對其他位置的資料庫訪問;
2、其次,系統的可靠性提高了很多,因為當網路出現故障時,仍然允許對局部資料庫的操作,而且一個位置的故障不影響其他位置的處理工作,只有當訪問出現故障位置的數據時,在某種程度上才受影響;
3、便於系統的擴充,增加一個新的局部資料庫,或在某個位置擴充一台適當的小型計算機,都很容易實現。然而有些功能要付出更高的代價;
例如,為了調配在幾個位置上的活動,事務管理的性能比在中心資料庫時花費更高,而且甚至抵消許多其他的優點。
分布式資料庫系統主要特點:
1.多數處理就地完成;
2.各地的計算機有數據通信網路相聯系。
3.克服了中心資料庫的弱點:降低了數據傳輸代價;
4. 提高了系統的可靠性,局部系統發生故障,其他部分還可繼續工作;
5.各個資料庫的位置是透明的,方便系統的擴充;
6.為了協調整個系統的事務活動,事務管理的性能花費高;
數據分片
類型:
(1)水平分片:按一定的條件把全局關系的所有元組劃分成若干不相交的子集,每個子集為關系的一個片段。
(2)垂直分片:把一個全局關系的屬性集分成若乾子集,並在這些子集上作投影運算,每個投影稱為垂直分片。
(3)導出分片:又稱為導出水平分片,即水平分片的條件不是本關系屬性的條件,而是其他關系屬性的條件。
(4)混合分片:以上三種方法的混合。可以先水平分片再垂直分片,或先垂直分片再水平分片,或其他形式,但他們的結果是不相同的。
條件:
(1)完備性條件:必須把全局關系的所有數據映射到片段中,決不允許有屬於全局關系的數據卻不屬於它的任何一個片段。
(2)可重構條件:必須保證能夠由同一個全局關系的各個片段來重建該全局關系。對於水平分片可用並操作重構全局關系;對於垂直分片可用聯接操作重構全局關系。
(3)不相交條件:要求一個全局關系被分割後所得的各個數據片段互不重疊(對垂直分片的主鍵除外)。
數據分配方式
(1)集中式:所有數據片段都安排在同一個場地上。
(2)分割式:所有數據只有一份,它被分割成若干邏輯片段,每個邏輯片段被指派在一個特定的場地上。
(3)全復制式:數據在每個場地重復存儲。也就是每個場地上都有一個完整的數據副本。
(4)混合式:這是一種介乎於分割式和全復制式之間的分配方式。
目前分布式資料庫分配的設計,越來越多的採用尋找最優解的演算法,比如遺傳演算法、退火機制等.

閱讀全文

與分布式資料庫相關的資料

熱點內容
姜慧恩演的片 瀏覽:924
最新帶撓腳心的電影 瀏覽:117
劉智苑健身是什麼電影 瀏覽:294
韓國恐怖電影失蹤免費觀看 瀏覽:899
韓劇電影免費看倫理 瀏覽:373
韓國最好看的三極推薦 瀏覽:503
兩個男人一起做鴨子的電影 瀏覽:745
國產恐怖片反派帶著面具拿著菜刀 瀏覽:522
可可托海 電影 瀏覽:472
池恩瑞的作品 瀏覽:18
巨貓電影 瀏覽:178
吃人奶 片段 瀏覽:168
啄木鳥電影都有哪些 瀏覽:298
江湖左手誰演的 瀏覽:670
部隊題材電影軍人可以去影院免費看嗎 瀏覽:564
章子怡 床戲 瀏覽:718
結婚過的男女電影 瀏覽:163
床戲影視 瀏覽:182
想看片卻找不到網站 瀏覽:724
國語電影免費在線 瀏覽:808