導航:首頁 > 最新股票 > ino股票今日好消息

ino股票今日好消息

發布時間:2021-08-03 01:15:48

1. 陳薇團隊新冠疫苗臨床試驗結果是什麼

陳薇團隊新冠疫苗臨床試驗結果是安全,能誘導免疫反應。

5月22日,國際學術期刊《柳葉刀》(The Lancet)發布的新聞稿稱。開放標簽、108名健康成年志願者參與的I期臨床試驗顯示,「結果令人滿意」;最終結果將在6個月內進行評估;此外還需進一步試驗,來評估該疫苗能否有效預防新冠病毒感染。

研究結果顯示,它是安全的、人體耐受性良好,且能夠引起人體免疫系統對新冠病毒的免疫反應(應答)。

這一研究成果來自中國科學家。中國工程院院士、軍事科學院軍事醫學研究院研究員陳薇領銜的團隊研發了前述Ad5新冠疫苗,並率先開展了I期和II期臨床試驗。接種後第14天,快速、特異的T細胞應答達到峰值;接種後第28天,產生中和抗體的體液免疫反應達到峰值。

(1)ino股票今日好消息擴展閱讀

其他國家的疫苗研發:

目前,全球有超過100種候選COVID-19疫苗正在開發中。中國的Ad5-nCoV疫苗只是其中的一種,現在拔得頭籌,有了人體1期臨床試驗的良好結果,可以說距離新冠疫苗研發成功更近了一步。

在全球疫苗的研發中,其他國家也在研發和試驗一些有優勢的新穎疫苗,如核糖核酸(RNA)疫苗和脫氧核糖核酸(DNA)疫苗。

在研發RNA和DNA疫苗方面,美國有幾個公司走在前列,如美國莫德納公司與國家過敏症和傳染病研究所合作研發的mRNA-1273疫苗,以及美國伊諾維奧制葯公司的INO-4800DNA新冠病毒疫苗也都在進行1期臨床試驗。這類疫苗的最大優勢是速度快,但由於是一類新疫苗,安全性尚待檢驗。

2. 新冠疫苗是哪個國家先研製出來的

近日,從中國軍事科學院傳來令人振奮的特大好消息:軍事醫學研究院陳薇院士領銜擔綱的科研團隊,已經率先在全球成功研製出重組新冠疫苗。這是陳薇院士團隊,自1月26日抵達武漢以來,嘔心瀝血爭分奪秒攻克難關,並且於3月16日重組新型冠狀病毒疫苗獲批啟動臨床試驗!陳薇院士說:疫苗是真正終結新冠最有力的科技武器,這個武器如果由中國率先研製出來,中國在這個特殊關鍵的領域才有自己獨立的知識產權,這不僅體現中國科技的進步,也體現了中國作為一個科研大國應有的形象!

「如大家急迫之中所知道的那樣,中國在開始分享病毒基因序列60天後,第一次疫苗試驗已經開始了。這的確是一項令人難以置信的偉大突破和成就。」世界衛生組織總幹事譚德塞,近日在世衛組織有關發布新冠肺炎最新消息的例行記者會上這樣高度評價中國關於新冠疫苗研究取得的巨大進展。

根據世衛組織官網發布的最新報道消息,譚德塞在18日的講話中提到,世衛組織已收到了20多萬例新冠肺炎病例報告,目前已經有8000多人喪生。超過80%的病例是來自西太平洋和歐洲這兩個區域。

相比之下,根據美國媒體報道,美國國家過敏症和傳染病研究所也在當地時間16日對外宣布:美國研發的一種新冠病毒疫苗,於當天開始進行第一階段臨床試驗,第一位志願者已接受試驗性疫苗注射,目前還在觀察效果期當中。報道說明,臨床試驗是在位於西雅圖的凱撒醫療集團華盛頓衛生研究所開展進行,有大約45名年齡在18歲至55歲之間的健康志願者將參與第一階段臨床試驗。而美國為了抓緊研製進度,疫苗研發過程中居然跳過了動物實驗的一環,直接開展人體測試,最終所造成的安全性後果其實還不得而知。

新冠病毒

世界衛生組織總幹事譚德塞在發布會上,也表達了全人類共同團結起來,戰勝疫情的決心和信心。雖然病毒給目前全世界帶來了前所未有的病毒沖擊及生命威脅。但這同時也是一次前所未有的科技創新的機會,全人類要竭盡全力通力合作來對付這個人類共同的敵人、這個已經成為危害人類自然界的最大敵人。令世界衛生組織總幹事譚德塞和世界人民感到尤其欣慰的是,這次中國軍隊終於為人類立下了可以銘記在歷史當中的一記最大功勞,已經率先在全球成功研製出重組新冠疫苗。這也將預示著人類將會盡快結束新冠病毒的持續侵害,將新冠病毒有力成功的剋制住。

在全世界新冠疫情橫流肆瘧,中國國門艱難防禦之際,中國新冠疫苗的橫空出世,如至暗時刻突然顯見一片光明。中國軍事專家王洪光評論:特別感謝陳薇及其團隊!感謝中國人民解放軍!

3. 請問通達信炒股分時圖中股價偏離均線3%的股票設為條件預警,求公式

tj:=between(dynaino(7),dynainfo(11)*0.97,dynainfo(11)*1.03);
not(tj);
功能--專家系統--公式管理器---用戶---條件選股公式---其他類型---新建
移動平均線,Moving Average,簡稱MA,原本的意思是移動平均,由於我們將其製作成線形,所以一般稱之為移動平均線,簡稱均線。它是將某一段時間的收盤價之和除以該周期。 比如日線MA5指5天內的收盤價除以5 。
移動平均線是由著名的美國投資專家Joseph E.Granville(葛蘭碧,又譯為格蘭威爾)於20世紀中期提出來的。均線理論是當今應用最普遍的技術指標之一,它幫助交易者確認現有趨勢、判斷將出現的趨勢、發現過度延生即將反轉的趨勢。

4. 我要內存發展史和最新行情

轉:
內存發展史
Wikipedia,自由的網路全書

在了解內存的發展之前,我們應該先解釋一下幾個常用詞彙,這將有助於我們加強對內存的理解。RAM就是Random Access Memory(隨機存貯器)的縮寫。它又分成兩種Static RAM(靜態隨機存貯器)和Dynamic RAM(動態隨機存貯器)。

SRAM曾經是一種主要的內存,SRAM速度很快而且不用刷新就能保存數據不丟失。它以雙穩態電路形式存儲數據,結構復雜,內部需要使用更多的晶體管構成寄存器以保存數據,所以它採用的矽片面積相當大,製造成本也相當高,所以現在只能把SRAM用在比主內存小的多的高速緩存上。隨著 Intel將L2高速緩存整合入CPU(從Medocino開始)後,SRAM失去了最大應用需求來源,還好在行動電話從模擬轉向數字的發展趨勢中,終於為具有省電優勢的SRAM尋得了另一個需求成長的契機,再加上網路伺服器、路由器等的需求激勵,才使得SRAM市場勉強得以繼續成長。

DRAM,顧名思義即動態RAM。DRAM的結構比起SRAM來說要簡單的多,基本結構是一隻MOS管和一個電容構成。具有結構簡單、集成度高、功耗低、生產成本低等優點,適合製造大容量存儲器,所以現在我們用的內存大多是由DRAM構成的。所以下面主要介紹DRAM內存。在詳細說明DRAM存儲器前首先要說一下同步的概念,根據內存的訪問方式可分為兩種:同步內存和非同步內存。區分的標準是看它們能不能和系統時鍾同步。內存控制電路(在主板的晶元組中,一般在北橋晶元組中)發出行地址選擇信號(RAS)和列地址選擇信號(CAS)來指定哪一塊存儲體將被訪問。在SDRAM之前的 EDO內存就採用這種方式。讀取數據所用的時間用納秒錶示。當系統的速度逐漸增加,特別是當66MHz頻率成為匯流排標准時,EDO內存的速度就顯得很慢了,CPU總要等待內存的數據,嚴重影響了性能,內存成了一個很大的瓶頸。因此出現了同步系統時鍾頻率的SDRAM。

DRAM的分類 FP DRAM:又叫快頁內存,在386時代很流行。因為DRAM需要恆電流以保存信息,一旦斷電,信息即丟失。它的刷新頻率每秒鍾可達幾百次,但由於FP DRAM使用同一電路來存取數據,所以DRAM的存取時間有一定的時間間隔,這導致了它的存取速度並不是很快。另外,在DRAM中,由於存儲地址空間是按頁排列的,所以當訪問某一頁面時,切換到另一頁面會佔用CPU額外的時鍾周期。其介面多為72線的SIMM類型。 EDO DRAM:EDO RAM――Extended Date Out RAM——外擴充數據模式存儲器,EDO-RAM同FP DRAM相似,它取消了擴展數據輸出內存與傳輸內存兩個存儲周期之間的時間間隔,在把數據發送給CPU的同時去訪問下一個頁面,故而速度要比普通DRAM 快15~30%。工作電壓為一般為5V,其介面方式多為72線的SIMM類型,但也有168線的DIMM類型。EDO DRAM這種內存流行在486以及早期的奔騰電腦上。當前的標準是SDRAM(同步DRAM的縮寫),顧名思義,它是同步於系統時鍾頻率的。SDRAM內存訪問採用突發(burst)模式,它和原理是, SDRAM在現有的標准動態存儲器中加入同步控制邏輯(一個狀態機),利用一個單一的系統時鍾同步所有的地址數據和控制信號。使用SDRAM不但能提高系統表現,還能簡化設計、提供高速的數據傳輸。 在功能上,它類似常規的DRAM,也需時鍾進行刷新。 可以說, SDRAM是一種改善了結構的增強型DRAM。然而,SDRAM是如何利用它的同步特性而適應高速系統的需要的呢?我們知道,原先我們使用的動態存儲器技術都是建立在非同步控制基礎上的。系統在使用這些非同步動態存儲器時需插入一些等待狀態來適應非同步動態存儲器的本身需要,這時,指令的執行時間往往是由內存的速度、而非系統本身能夠達到的最高速率來決定。例如,當將連續數據存入CACHE時,一個速度為60ns的快頁內存需要40ns的頁循環時間;當系統速度運行在100MHz時(一個時鍾周期10ns),每執行一次數據存取,即需要等待4個時鍾周期!而使用SDRAM,由於其同步特性,則可避免這一時。 SDRAM結構的另一大特點是其支持DRAM的兩列地址同時打開。兩個打開的存儲體間的內存存取可以交叉進行,一般的如預置或激活列可以隱藏在存儲體存取過程中,即允許在一個存儲體讀或寫的同時,令一存儲體進行預置。按此進行,100MHz的無縫數據速率可在整個器件讀或寫中實現。因為SDRAM的速度約束著系統的時鍾速度,它的速度是由MHz或ns來計算的。 SDRAM的速度至少不能慢於系統的時鍾速度,SDRAM的訪問通常發生在四個連續的突發周期,第一個突發周期需要4個系統時鍾周期,第二到第四個突發周期只需要1個系統時鍾周期。用數字表示如下:4-1-1-1。順便提一下BEDO(Burst EDO)也就是突發EDO內存。實際上其原理和性能是和SDRAM差不多的,因為Intel的晶元組支持SDRAM,由於INTEL的市場領導地位幫助 SDRAM成為市場的標准。

DRAMR的兩種介面類型 DRAM主要有兩種介面類型,既早期的SIMM和現在的標准DIMM。SIMM是Single-In Line Memory Mole的簡寫,即單邊接觸內存模組,這是486及其較早的PC機中常用的內存的介面方式。在更早的PC機中(486以前),多採用30針的SIMM 介面,而在Pentium中,應用更多的則是72針的SIMM介面,或者是與DIMM介面類型並存。DIMM是Dual In-Line Memory Mole的簡寫,即雙邊接觸內存模組,也就是說這種類型介面內存的插板的兩邊都有數據介面觸片,這種介面模式的內存廣泛應用於現在的計算機中,通常為 84針,但由於是雙邊的,所以一共有84×2=168線接觸,故而人們經常把這種內存稱為168線內存,而把72線的SIMM類型內存模組直接稱為72線內存。DRAM內存通常為72線,EDO-RAM內存既有72線的,也有168線的,而SDRAM內存通常為168線的。

新的內存標准在新的世紀到來之時,也帶來了計算機硬體的重大改變。計算機的製造工藝發展到已經可以把微處理器(CPU)的時鍾頻率提高的一千兆的邊緣。相應的內存也必須跟得上處理器的速度才行。現在有兩個新的標准,DDR SDRAM內存和Rambus內存。它們之間的競爭將會成為PC內存市場競爭的核心。DDR SDRAM代表著一條內存逐漸演化的道路。Rambus則代表著計算機設計上的重大變革。從更遠一點的角度看。DDR SDRAM是一個開放的標准。然而Rambus則是一種專利。它們之間的勝利者將會對計算機製造業產生重大而深遠的影響。

RDRAM在工作頻率上有大幅度的提升,但這一結構的改變,涉及到包括晶元組、DRAM製造、封裝、測試甚至PCB及模組等的全面改變,可謂牽一發而動全身。未來高速DRAM結構的發展究竟如何?Intel重新整裝再發的820晶元組,是否真能如願以償地讓RDRAM登上主流寶座?

PC133 SDRAM:PC133 SDRAM基本上只是PC100 SDRAM的延伸,不論在DRAM製造、封裝、模組、連接器方面,都延續舊有規范,它們的生產設備相同,因此生產成本也幾乎與PC100 SDRAM相同。嚴格來說,兩者的差別僅在於相同製程技術下,所多的一道「篩選」程序,將速度可達133MHz的顆粒挑選出來而已。若配合可支持 133MHz外頻的晶元組,並提高CPU的前端匯流排頻率(Front Side Bus)到133MHz,便能將DRAM帶寬提高到1GB/sec以上,從而提高整體系統性能。

DDR-SDRAM:DDR SDRAM(Double Data Rate DRAM)或稱之為SDRAMⅡ,由於DDR在時鍾的上升及下降的邊緣都可以傳輸資料,從而使得實際帶寬增加兩倍,大幅提升了其性能/成本比。就實際功能比較來看,由PC133所衍生出的第二代PC266 DDR SRAM(133MHz時鍾×2倍數據傳輸=266MHz帶寬),不僅在InQuest最新測試報告中顯示其性能平均高出Rambus 24.4%,在Micron的測試中,其性能亦優於其他的高頻寬解決方案,充份顯示出DDR在性能上已足以和Rambus相抗衡的程度。

Direct Rambus-DRAM :Rambus DRAM設計與以往DRAM很大的不同之處在於,它的微控制器與一般內存控制器不同,使得晶元組必須重新設計以符合要求,此外,數據通道介面也與一般內存不同,Rambus以2條各8 bit寬(含ECC則為9 bit)的數據通道(channel)傳輸數據,雖然比SDRAM的64bit窄,但其時鍾頻率卻可高達400MHz,且在時鍾的上升和下降沿都能傳輸數據,因而能達到1.6GB/sec的尖峰帶寬。

各種DRAM規格之綜合比較數據帶寬:從數據帶寬來看,傳統PC100在時鍾頻率為100MHz的情況下,尖峰數據傳輸率可達到800MB/sec。若以先進0.25微米線程製造的 DRAM,大都可以「篩選」出時鍾頻率達到133MHz的PC133顆粒,可將尖峰數據傳輸率再次提高至1.06GB/sec,只要CPU及晶元組能配合,就可提高整體系統性能。此外,就DDR而言,由於其在時鍾上升和下降沿都能傳輸數據,所以在相同133MHz的時鍾頻率下,其尖峰數據傳輸將可大幅提高兩倍,達到2.1 GB/sec的水準,其性能甚至比現階段Rambus所能達到的1.6GB/sec更高。

傳輸模式:傳統SDRAM採用並列數據傳輸方式,Rambus則採取了比較特別的串列傳輸方式。在串列的傳輸方式之下,資料信號都是一進一出,可以把數據帶寬降為16bit,而且可大幅提高工作時鍾頻率(400MHz),但這也形成了模組在數據傳輸設計上的限制。也就是說,在串接的模式下,如果有其中一個模組損壞、或是形成斷路,便會使整個系統無法正常開機。因此,對採用Rambus內存模組的主機板而言,便必須將三組內存擴充插槽完全插滿,如果Rambus模組不足的話,只有安裝不含RDRAM顆粒的中繼模組(Continuity RIMM Mole;C-RIMM),純粹用來提供信號的串接工作,讓數據的傳輸暢通。

模組及PCB的設計:由於Rambus的工作頻率高達400MHz,所以不管是電路設計、線路布局、顆粒封裝及記憶模組的設計等,都和以往SDRAM大為不同。以模組設計而言,RDRAM所構成的記憶模組稱之為RIMM(Rambus In Memory Mole),目前的設計可採取4、6、8、12與16顆等不同數目的RDRAM顆粒來組成,雖然引腳數提高到了184隻,但整個模組的長度卻與原有 DIMM相當。

另外,在設計上,Rambus的每一個傳輸信道所能承載的晶元顆粒數目有限(最多32顆),從而造成RDRAM內存模組容量將有所限制。也就是說,如果已經安裝了一隻含16顆RDARM顆粒的RIMM模組時,若想要再擴充內存,最多隻能再安裝具有16顆RDARM的模組。另外,由於 RDARM在高頻下工作將產生高溫,所以RIMM模組在設計時必須加上一層散熱片,也增加了RIMM模組的成本。

顆粒的封裝:DRAM封裝技術從最早的DIP、SOJ提高到TSOP的形式。從現在主流SDRAM的模組來看,除了勝創科技首創的TinyBGA技術和樵風科技首創的BLP封裝模式外,絕大多數還是採用TSOP的封裝技術。

隨著DDR、RDRAM的陸續推出,將內存頻率提高到一個更高的水平上,TSOP封裝技術漸漸有些力不從心了,難以滿足DRAM設計上的要求。從Intel力推的RDRAM來看,採用了新一代的μBGA封裝形式,相信未來DDR等其他高速DRAM的封裝也會採取相同或不同的BGA封裝方式。

盡管RDRAM在時鍾頻率上有了突破性的進展,有效地提高了整個系統性能,但畢竟在實際使用上,其規格與現階段主流的SDRAM有很大的差異,不僅不兼容於現有系統晶元組而成了Intel一家獨攬的局面。甚至在DRAM模組的設計上,不僅使用了最新一代的BGA封裝方式,甚至在電路板的設計上,都採取用了8層板的嚴格標准,更不用說在測試設備上的龐大投資。使得大多數的DRAM及模組廠商不敢貿然跟進。

再說,由於Rambus是個專利標准,想生產RDRAM的廠商必須先取得Rambus公司的認證,並支付高額的專利費用。不僅加重了各DRAM廠商的成本負擔,而且它們擔心在制定未來新一代的內存標准時會失去原來掌握的規格控制能力。

由於RIMM模組的顆粒最多隻能為32顆,限制了Rambus應用,只能用在入門級伺服器和高級PC上。或許就PC133而言,在性能上無法和Rambus抗衡,但是一旦整合了DDR技術後,其數據帶寬可達到2.1GB/sec,不僅領先Rambus所能達到的1.6GB/sec標准,而且由於其開放的標准及在兼容性上遠比Rambus高的原故,估計將會對Rambus造成非常大的殺傷力。更何況台灣在威盛與AMD等聯盟的強力支持下,Intel是否能再象往日一般地呼風喚雨,也成了未知數。至少,在低價PC及網路PC方面,Rambus的市場將會很小。

結論:盡管Intel採取了種種不同的策略布局及對策,要想挽回Rambus的氣勢,但畢竟像Rambus這種具有突破性規格的產品,在先天上便存在有著諸多較難克服的問題。或許Intel可以藉由更改主機板的RIMM插槽方式、或是提出SDRAM與RDRAM共同存在的過渡性方案(S- RIMM、RIMM Riser)等方式來解決技術面上的問題。但一旦涉及規模量產成本的控制問題時,便不是Intel所能一家獨攬的,更何況在網路趨勢下的計算機應用將愈來愈趨於低價化,市場需求面是否對Rambus有興趣,則仍有待考驗。 在供給方面,從NEC獨創的VCM SDRAM規格(Virtual Channel Memory)、以及Samsung等DRAM大廠對Rambus支持態度已趨保守的情況來看,再加上相關封裝及測試等設備上的投資不足,估計年底之前, Rambus內存模組仍將缺乏與PC133甚至DDR的價格競爭力。

就長遠的眼光來看,Rambus架構或許可以成為主流,但應不再會是主導市場的絕對主流,而SDRAM架構(PC133、DDR)在低成本的優勢,以及廣泛的應用領域,應該會有非常不錯的表現。相信未來的DRAM市場,將會是多種結構並存的局面。

具最新消息,可望成為下一世代內存主力的Rambus DRAM因晶元組延遲推出,而氣勢稍挫的情況之下,由全球多家半導體與電腦大廠針對DDR SDRAM的標准化,而共同組成的AMII(Advanced Memory International Inc、)陣營,則決定積極促進比PC200、PC266速度提高10倍以上的PC1600與PC2100 DDR SDRAM規格的標准化,此舉使得Rambus DRAM與DDR SDRAM的內存主導權之爭,邁入新的局面。全球第二大微處理器製造商AMD,決定其Athlon處理器將採用PC266規格的DDR SDRAM,而且決定在今年年中之前,開發支持DDR SDRAM的晶元組,這使DDR SDRAM陣營深受鼓舞。全球內存業者極有可能將未來投資的重心,由Rambus DRAM轉向DDR SDRAM。

綜上所述,今年DDR SDRAM的發展勢頭要超過RAMBUS。而且DDR SDRAM的生產成本只有SDRAM的1.3倍,在生產成本上更具優勢。

未來除了DDR和RAMBUS外還有其他幾種有希望的內存產品,下面介紹其中的幾種: SLDRAM (SyncLink DRAM,同步鏈接內存):SLDRAM也許是在速度上最接近RDRAM的競爭者。SLDRAM是一種增強和擴展的SDRAM架構,它將當前的4體(Bank)結構擴展到16體,並增加了新介面和控制邏輯電路。SLDRAM像SDRAM一樣使用每個脈沖沿傳輸數據。
最新行情去太平洋看看http://www.pconline.com.cn/

閱讀全文

與ino股票今日好消息相關的資料

熱點內容
姜慧恩演的片 瀏覽:924
最新帶撓腳心的電影 瀏覽:117
劉智苑健身是什麼電影 瀏覽:294
韓國恐怖電影失蹤免費觀看 瀏覽:899
韓劇電影免費看倫理 瀏覽:373
韓國最好看的三極推薦 瀏覽:503
兩個男人一起做鴨子的電影 瀏覽:745
國產恐怖片反派帶著面具拿著菜刀 瀏覽:522
可可托海 電影 瀏覽:472
池恩瑞的作品 瀏覽:18
巨貓電影 瀏覽:178
吃人奶 片段 瀏覽:168
啄木鳥電影都有哪些 瀏覽:298
江湖左手誰演的 瀏覽:670
部隊題材電影軍人可以去影院免費看嗎 瀏覽:564
章子怡 床戲 瀏覽:718
結婚過的男女電影 瀏覽:163
床戲影視 瀏覽:182
想看片卻找不到網站 瀏覽:724
國語電影免費在線 瀏覽:808