導航:首頁 > 最新股票 > 如何看一隻股票的市場佔有率

如何看一隻股票的市場佔有率

發布時間:2021-08-09 15:20:02

❶ 怎麼確定股票核心業務及市場份額

怎麼確定股票核心業務及市場份額?這要你要有一定的金融知識才可以對這個行業有一定的認識。

❷ 怎樣看一隻股票的業績

在把自己的血汗錢拿出來投資股票之前,一定要分析研究這只股票是否值得投資。以下的步驟,將教你如何進行股票的基本面分析。
所需步驟:
1. 了解該公司。多花時間,弄清楚這間公司的經營狀況。以下是一些獲得資料的途徑:
* 公司網站
* 財經網站和股票經紀提供的公司年度報告
* 圖書館
* 新聞報道——有關技術革新和其它方面的發展情況
2. 美好的前景。你是否認同這家公司日後會有上佳的表現?
3. 發展潛力、無形資產、實物資產和生產能力。這時,你必須象一個老闆一樣看待這些問題。該公司在這些方面表現如何?
* 發展潛力——新的產品、拓展計劃、利潤增長點?
* 無形資產——知識版權、專利、知名品牌?
* 實物資產——有價值的房地產、存貨和設備?
* 生產能力——能否應用先進技術提高生產效率?
4. 比較。與競爭對手相比,該公司的經營策略、市場份額如何?
5. 財務狀況。在報紙的金融版或者財經網站可以找到有關的信息。比較該公司和競爭對手的財務比率:
* 資產的賬面價值
* 市盈率
* 凈資產收益率
* 銷售增長率
6. 觀察股價走勢圖。公司的股價起伏不定還是穩步上揚?這是判斷短線風險的工具。
7. 專業的分析。F10為個股資料,裡面的業內點評清楚地評價了公司的行業地位及發展前景,可以作為參考,還有淘股吧論壇,裡面不乏有高人分析個股的技術面與題材面。
技巧提示:
1、 潛在的行業龍頭,要重點關注。比如中國南車,剛上市就跌到了3元,作為動車組的龍頭股,肯定是低估了,中線持有必賺;
2、 低價是永恆的題材。這里所說的低價,是絕對低價,歷史上從來沒有大幅炒作過的品種,一旦有熱門的題材引發主升,往往成為黑馬。
注意事項:
每個投資者都經歷過股票套牢的滋味。這時應該保持冷靜,分析公司的基本面,確定該股票是否還值得長期持有。

❸ 股票怎麼算市場佔有率

這個是算不出來的,只能看看市場各種機構上對它的研究報告。

❹ 怎麼看一個股票國內市場份額佔有多少,在軟體的財務分析力有嗎

股票軟體里一般沒有,需要查公司的年報半年報,或者公司所在行業的相關網站

❺ 如何查看上市公司業務的市場佔有率

F10查看上市公司業務的市場佔有率:比如 ,招股說明書披露,公司近三年底播蝦夷扇貝市場佔有率分別為41.06%、
40.3%、42.28%,連續三年在同行業中排名第一;近三年底播海參市場佔有率分別為16%、17.4%、18.3%;底播鮑魚在05年市場佔有率達到16.4%。06年底播蝦。夷扇貝、底播刺參、皺紋盤鮑可收獲面積比05年均有不同程度提高上市公司的主要產品是穩定的,在中報和年報中可以查到。市場佔有率比較麻煩,有一個統計的過程,有滯後性,而且渠道不同,准確性和時效性也不一樣。比如家電的話,有產業在線可以查詢。不同的行業有不同的渠道。深交所的互動易可以詢問董秘。有的公司這個是商業機密,你查不到的。

❻ 請問怎樣看一支股票的業績求解

評估股票業績的指標是要看個股的市盈率。簡單講就是同行業相比股票市盈率越低表示對應的上市公司業績越好。

市盈率分又為靜態市盈率與動態市盈率。靜態市盈率被廣泛談及也是人們通常所指,但更應關注與研究動態市盈率。市場廣泛談及的市盈率通常指的是靜態市盈率,這給投資人的決策帶來了許多盲點和誤區。畢竟過去的並不能充分說明未來,而投資股票更多的是看未來!動態市盈率的計算公式是以靜態市盈率為基數,乘以動態系數。該系數為1÷(1+i)n,其中i為企業每股收益的增長性比率,n為企業可持續發展的存續期。比如說,該企業未來保持該增長速度的時間可持續5年,即n=5,則動態系數為1÷(1+35%)5=22%。相應地,動態市盈率為11.6倍,即:52(靜態市盈率:20元÷0.38元=52)×22%。兩者相比,差別之大,相信普通投資人看了會大吃一驚,恍然大悟。動態市盈率理論告訴一個簡單樸素而又深刻的道理,即投資股市一定要選擇有持續成長性的公司。因此不難理解資產重組為什麼會成為市場永恆的主題,以及有些業績不好的公司在實質性的重組題材支撐下成為市場黑馬。

具體如何分析靜態市盈率、動態市盈率?如果一間公司受到投資收益等非經營性收益帶來較好的每股盈利,從而導致其該年靜態市盈率顯得相當具有誘惑力;如果一間公司該年因動用流動資金炒股獲得了高收益,或者是該年部分資產變現獲取了不菲的轉讓收益等,那麼對於一些本身規模不是特別大的公司而言,這些都完全有可能大幅提升其業績水平,但這樣更多是由非經營性收益帶來的突破增長,需要辯證地去看待。非經營性的收益帶給公司高的收益,這是好事,短期而言,對公司無疑有振奮刺激作用,但這樣的收益具有偶然性、不可持續性。資產轉讓了就沒有了,股票投資本身就具有不確定性,沒有誰敢絕對保證一年有多少收益。因此,非經營性收益是可遇而不可求。

如上圖1,600000浦發銀行,市盈率不到7,應該是業績優良,但結合其所屬行業銀行的行業平均市盈率來看基本上屬於平均值附近。

如圖2,002465海格通信,適應力靜態44.83,動態77.67,市盈率較高,但由於其屬於軍工通信行業,相比來說在行業內也不屬於過高。

因此評價一個股票的業績需要綜合來看,既要動靜結合,也要看其業績是否屬於偶然事件,還要看所處的行業平均水平。

❼ 如何看一隻股票的業績

我是用同花順免費版看的,每一隻股票都有個股信息,裡面可以看到很多東西。比如財務指標

❽ 如何看一隻股票的業績

我是用同花順免費版看的,每一隻股票都有個股信息,裡面可以看到很多東西。比如財務指標

❾ 如何查看一支股票的總買和總賣的量

你想要的,不可能了。。。。。呵呵
一般軟體報價是5-10(依據市場買賣積極性,或市場人氣)秒左右報一筆 比如400B 就是說5秒內合計這么多筆,比如第一秒有人賣了100手,第二秒有人賣了100手,第三秒買了200手,第四秒第五秒無人交易,最後一筆是買,所以爆出來的是400B,但是實際不是這樣的
有莊家可以用這個漏洞騙盤騙線的,造成錯覺,參考意義不大的,統計意義也不大
B主動性買入
S主動性賣出

❿ 請問如何查詢一隻股票的買入量和賣出量

中國股票波動性的分解實證研究
宋逢明/李翰陽
【摘 要 題】證券市場
【正 文】
一、概述
在金融學領域中,波動特性一直是重要的研究內容。目前對中國股票市場波動性的研究,大多以滬市、深市兩市場指數為對象。得到的結論普遍認為中國股票市場存在較劇烈的波動,與西方尤其是美國較為發達的股票市場相比,中國股票市場的波動顯著大於它們的市場波動。但是分析中國市場的特性後,可以認為分解股票的總體波動性,在股票的市場風險和個別風險兩個層面上對中國股市的波動進行實證研究是具有一定意義的。
首先,市場中有大量的散戶投資者,而其中相當數量的散戶持有大量個股而非投資組合。盡管機構投資者逐漸成為市場的主導力量,但是散戶投資者及其投資總量仍在市場中佔有很大比例。根據markowitz(1952)的資產組合理論,這一類投資者不能夠做到分散化投資,對於他們來說企業個別波動的影響的程度決不亞於市場波動帶來的影響。其次,市場具有高度不完全性,缺乏完善的機制和足夠的金融工具。雖然傳統理論認為20至30隻股票的資產組合可以很好地實現風險的分散化從而消除這些股票的個別風險,但在中國市場中由於缺少做空機制和必要的金融工具,也不能全部做到風險的分散化,構成這一組合的股票的個別風險不可忽視。
除這些特點外,中國市場中的投資理念變化也強調了分解總體波動性的意義:近年來,中國市場中價值投資理念開始逐步被普遍採納,對於某些特定股票的重視被加深,而分散化的做法反而逐漸淡化,所以股票的個別風險情況就顯得尤為重要。還有,中國的市場中存在大量的投機者甚至是賭博者利用某一隻股票在市場中的定價偏差進行套利,此時他們就充分暴露在這一隻股票的個別風險之下,而不是市場的總體風險。而且市場中曾經有嚴重的炒作行為,這類行為也大大影響了股票的個別波動。
基於上述分析,可以認為對於股票的總體波動進行分解,分別對市場波動性和個別波動性進行實證研究是有重要實際意義的。但是,無論是國內還是國外,很少有研究者將總體波動性分解,並同時在不同層面(市場、公司)對波動性進行實證分析。campbell,lettau,malkie和xu(2001)發現,在美國股市中,盡管市場波動並未增加,但是在1962年到1997年間,個別公司的不確定性大大增強了。但是,目前對這一現象的解釋尚無定論。對於中國市場的情況,宋逢明和江婕(2003)得出的結論是1998年以後的中國股票市場的總體風險與s&p500成分股所代表的美國股市相當,但是中國股市中的系統風險一直高於美國市場。
下面我們將先介紹研究中採用的波動分解模型和波動度量的估計方法,然後著重分析不同波動成分的變化趨勢並對其成因進行簡單的分析。
二、波動性的分解模型和估計方法
1.波動性的分解模型
本文的研究中,將一隻股票的收益分解為兩部分:市場收益與個別收益。通過這種分解,我們可以構造衡量個股的兩種波動的度量,這兩種波動之和就是該股票收益的波動,所採用的方法優點在於無需計算股票間的協方差以及個股的β。
根據capm模型,我們可以得到一種個股收益波動的分解方式:
(1)var(r[,it])=β[2][,im]var(r[,mt])+var({圖}[,it])
其中r[,it]為個股的超額收益,r[,mt]為市場超額收益,且capm模型本身有r[,mt]與{圖}[,it]正交。但是這種分解的缺點是難以估計個股的β,且個股β是隨時間變化的。為解決這一問題,下面我們給出一種簡化的模型,該模型不需要個股β的信息。同時,該模型可以對個股收益的方差進行類似於(1)的分解。
首先,考慮如下不需要β的個股收益模型:
(2)r[,it]=r[,mt]+ε[,it]
注意在模型(2)中,r[,mt]與ε[,it]不是正交的,因此在計算個股收益的方差時不能忽略協方差項。根據模型(2),個股收益的方差為:
附圖{圖}然而,這里的方差分解又一次引入了個股的β。
但是,對整個市場內的所有個股收益的方差進行加權平均便消除了帶有個股β的協方差項:
(4)∑[,i]ω[,it]var(r[,it])=var(r[,mt])+∑[,i]ω[,it]var(ε[,it])=σ[2][,mt]+σ[2][,εt]
其中σ[2][,mt]=var(r[,mt]),σ[2][,εt]=∑[,i]ω[,it]var(ε[,it])。根據這種分解方法,我們就可以利用模型(2)中的殘查項ε[,it]來構造一種不需要個股β的平均個別波動度量標准。加權平均波動∑[,i]ω[,it]var(r[,it])可以理解為隨機選取的個股的波動期望值(隨機抽取到股票i的概率等於其在市場中的權重ω[,it])。
2.數據及波動性成分的估計
本文採用在上海證券交易所和深圳證券交易所交易的a股股票數據來估計基於模型(4)的個股超額收益分解所得到的等式(4)中的波動成分量。樣本期從1990年12月19日始,至2001年12月31日終。這一樣本期內,股票數量發生了巨大變化,從期初的8隻增加到期末的1133隻、股票的日交易數據共計1,311,427組。為了得到模型(2)中的個股超額收益(r[,it])和市場超額收益(r[,mt]),採用的無風險收益是人民幣一年期定期存款利率。
為估計等式(4)中的兩種波動成分量,採用下列步驟。令s為計算收益的時間間隔,本文主要採用股票日收益數據進行估計。令t為計算波動的時間間隔,本文中t一般指月。在時間間隔t內的市場收益波動,以mkt[,t]表示,由下式計算:
附圖{圖}
其中μ[,mt]是時間間隔t內市場收益r[,ms]的均值。市場收益是利用時間間隔t內所有個股收益加權平均得到的,取每隻股票當月的流通市值占總流通市值的比例且不考慮現金紅利再投資情況作為該股票的權重。這樣就得到了股票第一部分波動,即市場波動的估計量。
對於股票第二部分波動,即個別因素造成的收益波動,首先要根據公式(4)計算個股超額收益與市場超額收益的差ε[,is]=r[,is]-r[,ms],然後計算個股在時間間隔t內的波動:
附圖{圖}
如前所述,為了消除計算中的個股之間的協方差量,必須對整個市場內的所有個股收益的方差進行加權平均。由此得到了衡量各股票個別因素造成的平均波動的估計量,以firm[,t]表示:
附圖{圖}
經過上述步驟,就得到了衡量市場內個股的市場風險和個別風險的兩個估計量mkt[,t]和firm[,t]。
三、不同波動性成分的趨勢分析
根據上述模型和估計方法,即可對中國市場的股票收益波動情況進行分解研究。首先按照前面的估計方法,估計出市場波動以及個別股票波動這兩部分波動量的大小,進行圖形分析。圖1(a)顯示了中國股市中市場波動成分隨時間變化的情形,包含了在上交所及深交所上市的所有a股股票,並按照流通市值進行加權平均,從圖中可以初步看出市場波動成分有一定的下降趨勢,但是不夠明顯。
圖1(b)對圖1(a)中的數據進行滯後12階(即數據滯後一年)的簡單移動平均,進一步表明市場波動成分有下降的趨勢。1990年至1991年股票樣本數量及交易量太小,波動不明顯,但1992年初,市場波動值約在0.020到0.025之間,至2001年底樣本期末,市場波動值約為0.05。尤其是1994年中期過後,市場波動的下降趨勢更為明顯。
圖2(a)則顯示了中國股市中個別因素波動成分隨時間變化的情形,從圖中可以初步看出個別波動成分隨時間沒有明顯的趨勢。圖2(b)同樣是圖2(a)中數據進行滯後12階移動平均的結果。圖中有一定的趨勢,但是很不明顯。期初波動值約為0.020,至2001年底,波動值約為0.010。從整體上看,圖像較為平緩。
附圖{圖}
圖2 中國股票個別因素波動(firm[,t])
從圖形分析中可以看出,中國股市的市場波動成分在樣本期內有較為明顯的下降趨勢,而個別因素的波動成分在樣本期內有下降,但是不明顯。而且兩列時序數據都有持續的波動,說明其變化趨勢有可能是隨機性的。因此,除了進行圖形分析,要確定兩種波動成分的時間序列數據是否有確定性趨勢,還是僅僅為隨機性趨勢,還需要進一步進行計量經濟學分析。
2.確定性趨勢檢驗
為了便於分析,將市場波動數據進行年度化(即原始月數據乘以12)。第一步先分析他們的自相關結構。
市場波動的自相關系數下降很快,但是在0附近波動,因而不能明顯判斷序列的平穩性,不能排除單位根存在的可能。公司個別波動的自相關函數下降很快,且在0附近基本沒有波動,因而可以初步判斷序列是平穩的,並初步排除單位根存在的可能。
表1 自相關系數
滯後階數 1 2 3 4 5 6 7 8 9 10 11 12
市場波動 0.275 0.145 0.022 0.032 0.025 0.031 0.095 0.087 0.278 -.032 -.018 0.075
公司個別波動 0.021 -.018 0.018 0.049 -.015 0.117 0.062 -.028 0.058 0.015 -.017 -.023
為了檢驗序列是否有單位根,以及是否有確定性趨勢,需要進行adf檢驗。首先,根據campbell & perron(1991)推薦的方法確定滯後階數為9階。表2將市場波動的三種形式adf檢驗模型同時估計出,並給出ρ統計量和τ統計量的檢驗結果:
表2 市場波動的adf檢驗
模型類型 滯後 ρ pr<ρ τ pr<τ f pr>f
無常數項和趨勢項 9 -7.8217 0.0512 -1.69 0.0860
有常數項 9 -33.7582 0.0011 -2.71 0.0751 3.68 0.1339
有常數項和趨勢項 9 -310.761 0.0001 -3.91 0.0144 7.79 0.0141
三種模型的ρ統計量都顯著地拒絕了存在單位根的零假設,在10%的置信水平下,τ統計量也可以拒絕模型1和模型2的存在單位根的零假設。我們主要注意模型3,即包含時間趨勢項的形式,可見ρ統計量和τ統計量都非常顯著地拒絕了存在單位根的零假設;而且f統計量表明整個模型是顯著的。
對模型3進行普通ols估計,得到的各項系數的普通t檢驗結果都是顯著的,其中趨勢項的系數為-0.00269,其t統計量是-2.79,在5%的置信水平下,可以顯著地拒絕時間趨勢項系數為零的零假設。結合前面的結果,可以確定中國股市中市場波動的成分序列沒有單位根,且模型3的顯著性表明該時間序列具有確定性趨勢。其趨勢項系數為-0.00269,表明隨時間變化,年度化的mkt[,t]數據具有減小的趨勢。
表3給出了個別波動時序數據的adf檢驗結果,根據前面提到的方法,確定滯後階數為5階。
表3 公司個別波動的adf檢驗
模型類型 滯後 ρ pr<ρ τ pr<τ f pr>f
無常數項和趨勢項 5 -24.9683 0.0002 -2.92 0.0038
有常數項 5 -64.0214 0.0011 -3.89 0.0029 7.55 0.0010
有常數項和趨勢項 5 -127.348 0.0001 -4.58 0.0017 10.53 0.0010
對於模型3,該模型的檢驗結果顯著拒絕了存在單位根的零假設,雖然模型整體是顯著的,但是時間趨勢項的t統計量為-2.32,不能拒絕時間趨勢項系數為零的零假設,說明時序數據不符合該模型。繼而檢驗模型2同樣拒絕了存在單位根的零假設,其常數項的t統計量為2.49,不能拒絕常數項系數為零的零假設。模型1仍然拒絕了存在單位根的零假設,最後確定該序列無單位根,但是不包含確定性趨勢。
經過上述的計量經濟學檢驗,證實了前面圖形分析的結論,即:中國股票的市場波動成分隨時間變化有減小的確定性趨勢,但是股票的個別因素波動成分沒有確定性趨勢。這說明,中國股市的總體波動中,市場因素造成的波動在不斷減少,而股票個別因素造成的波動沒有確定的變化趨勢。
3.波動趨勢的原因討論
經過計量經濟學研究,可以確認在樣本期內中國股票的市場波動成分有減小的確定性趨勢。下面將對這一現象作進一步分析,討論其可能的成因,但更明確的定論還有待進一步研究的證明。
首先,中國股票市場處於逐步成熟的過程中,隨其發展,市場的透明度也在不斷提高,使得不同投資者之間的信息不對稱狀況得到了改善,根據我們模擬信息不對稱下市場波動的結果,可以證明:信息不對稱的程度對市場波動性的影響是存在的,當市場中有嚴重的信息不對稱時,市場波動較大,當信息不對稱較緩和時,市場波動也降低。因此我國股市中的信息不對稱程度的降低是市場波動逐步減少的一個原因。
其次,中國股票市場目前還處於高速的成長期,在本文選用的樣本期內,這一成長趨勢更為明顯。其間市場中的股票數量有顯著增加,其結果是中國a股市場中股票收益的平均相關系數不斷下降,而且這一相關性下降自1993年起尤其明顯。單個股票收益間相關性的下降在一定程度上使得市場收益趨於相對穩定,因而造成中國股票的市場波動成分逐漸減小。
第三,中國股票市場的監管也在不斷加強,不斷有新的法規出台從政策角度完善中國股票市場。而且進一步的分析發現中國股票的市場波動成分與個別因素波動成分的比值在樣本期內不斷下降,且在市場波動成分在總體波動中也占相對小的比例,從一定程度上反映了市場的持續完善化。市場的完善也會促使市場收益的穩定,即市場波動成分呈變小趨勢。
同時,在中國股票市場中,機構投資者正在逐漸替代散戶成為市場投資的主要力量。機構投資力量的加強使得市場中的炒作成分變小,也減少了投機成分,因而有利於市場收益的穩定。這同樣也可能是市場波動成分下降的原因。還有數據顯示,樣本期內中國股票市場中的交易日益活躍,這雖然可能導致個別股票收益波動增加,但是對於市場整體來說,增加的交易量可能會減小市場收益的波動。
四、結論
本文採用的波動性度量,可以有效地對總體波動性進行分解,並方便地對不同波動成分作出估計。通過移動平均方法和確定性趨勢檢驗,得到了如下主要結論:首先,中國股票的市場波動隨時間變化有減小的確定性趨勢,從中可以看到中國股市在10多年的發展中確實在不斷進步,股票市場的投資環境在逐漸完善。其次,雖然從表面上看,中國股票市場的平均個別因素波動成分有下降趨勢,但經過計量經濟學方法的檢驗,證明這一趨勢不是確定性的,表明中國市場中的上市公司質量並沒有得到根本性的改良,企業治理仍有待提高。
同時本文對中國股票的市場波動減小的結論提出了一些可能的解釋,為後續研究提供了方向,可在此基礎上,進一步論證中國股票市場的不同波動成分變化趨勢的深層原因。
【參考文獻】
[1]宋逢明,江婕.中國股票市場波動特性的實證研究[j].金融研究,2003.(4).
[2]campbell,j.y.,and p.perron,1991,pitfalls and opportunities:what macroeconomists should know about unit roots[j].nber macroeconomics annual 6,141-201.
[3]campbell,j.y.,m.lettau,b.g.malkiel,and y.xu,2001,have indivial stocks become more volatile?an empirical exploration of idiosyncratic risk[j].the journal finance lvi 1,1-43.
[4]hamilton,j.d.,1994,time series analysis[m].princeton university press.
【原文出處】財經論叢
【原刊地名】杭州
【原刊期號】200404
【作者簡介】作者單位:清華大學經濟管理學院

閱讀全文

與如何看一隻股票的市場佔有率相關的資料

熱點內容
姜慧恩演的片 瀏覽:924
最新帶撓腳心的電影 瀏覽:117
劉智苑健身是什麼電影 瀏覽:294
韓國恐怖電影失蹤免費觀看 瀏覽:899
韓劇電影免費看倫理 瀏覽:373
韓國最好看的三極推薦 瀏覽:503
兩個男人一起做鴨子的電影 瀏覽:745
國產恐怖片反派帶著面具拿著菜刀 瀏覽:522
可可托海 電影 瀏覽:472
池恩瑞的作品 瀏覽:18
巨貓電影 瀏覽:178
吃人奶 片段 瀏覽:168
啄木鳥電影都有哪些 瀏覽:298
江湖左手誰演的 瀏覽:670
部隊題材電影軍人可以去影院免費看嗎 瀏覽:564
章子怡 床戲 瀏覽:718
結婚過的男女電影 瀏覽:163
床戲影視 瀏覽:182
想看片卻找不到網站 瀏覽:724
國語電影免費在線 瀏覽:808