Ⅰ 某一個月期的無紅利支付的歐式看跌期權的當前價格為2.5美元,股票現價為47美元,期
歐式期權的現有價值是2.5+47=49.5元
由於執行實在一個月後,所以執行價值是50/(1+6%/12)
如果後者大於前者,就有套利機會
Ⅱ 現有一個期限為3個月的歐式股票看漲期權,跪求 急急急
Call-Put平價公式為P+S=C+Ke^[-r(T-t)]
根據平價公式依題意可知,K=45,C=8,P=1,e^-r=1/(1+10%),T-t=3/12=1/4,S=50。
(註:題目中沒有說明無風險利率是否連續,這是按不連續算的e^-r,由於是3個月期,對於T-t是按年化來計算的。)
把相關數值代入平價公式可得1+50<8+45/(1+10%)^(1/4)=51.94,存在套利機會。
應該通過持有該期權標的物和買入看跌期權,並且賣出看漲期權構成一個套利頭寸組合。
當股票價格為40元,看跌期權進行行權,獲得5元(45-40)的期權價值,扣除1元購入看跌期權成本,實際獲利4元;標的物股票虧損10元(50-40);賣出的看漲期權,由於標的物股票價格低於執行價格,故此看漲期權是不會行權的,所以賣出的看漲期權獲利為賣出時的期權費8元。綜合上述情況,套利利潤為4-10+8=2元。
Ⅲ 一個無股息股票看漲期權的期限為6個月,當前股票價格為30美元,執行價格為28美元,無風險利率為每年8%
看漲期權下限套利是指(下文分析針對歐式期權):
任何時刻,不付紅利的歐式看漲期權的價格應高於標的資產現價S與執行價格的貼現值Ke^-rT的差額與零的較大者。即不付紅利的歐式看漲期權價格應滿足以下關系式:
C>max(S-Ke^-rT,0)
其中,C代表看漲期權權利金;K為期權執行價格;T為期權的到期時間;S為標的資產的現價r為在T時刻到期的投資的無風險利率(連續復利)。
當S-Ke^-rT>0,且C<S-Ke^-rT時,則可以進行看漲期權下限套利。即買入看漲期權,同時做空標的資產。
從另一個角度來理解,期權下限套利的含義是指期權價格應當大於其內涵價值與零的較大者。期權的價值由內涵價值和時間價值構成。其中,期權的內涵價值是指買方立即行權所能獲得的收益。
具體到你的題目,該看漲期權的下限是max(S-Ke^-rT,0)。經計算,S-Ke^-rT為30-28^-0.08*6/12=3.0979.看漲期權的下限是max(3.0979,0)=3.0979
如果此時看漲期權價格低於3.0979,就滿足了單個看漲期權下限套利的條件,即S-Ke^-rT>0,且C<S-Ke^-rT,便可以進行套利。
看漲期權下限套利的損益曲線,類似於將買入看跌期權的損益曲線全部平移至0軸上方。損益示意圖如下(注意僅為示意圖,本題需要修改數字,我就不重畫了)
操作方式是,買入看漲期權,同時做空標的資產(股票)。簡言之,就是「買低賣高」。在實際操作中,我們還可以利用標的資產的期貨來替代標的資產現貨,實現更便捷的操作和更低的交易費用。尤其是有的國家做空股票很不方便,例如中國(我國需要融券做空,費用高,流程繁瑣)。
另外補充一下,期權套利分為三大類:一是單個期權套利,包括單個期權上限套利、單個期權下限套利;二是期權平價套利,包括買賣權平價套利、買賣權與期貨平價套利;三是多個期權價差套利,又稱為期權間價格關系套利,包括垂直價差上限套利、垂直價差下限套利、凸性價差套利、箱式套利。
Ⅳ 寫出歐式看漲期權和看跌期權平價公式並給出證明
C+Ke^(-rT)=P+S0
平價公式是根據無套利原則推導出來的。
構造兩個投資組合。
1、看漲期權C,行權價K,距離到期時間T。現金賬戶Ke^(-rT),利率r,期權到期時恰好變成K。
2、看跌期權P,行權價K,距離到期時間T。標的物股票,現價S0。
看到期時這兩個投資組合的情況。
1、股價St大於K:投資組合1,行使看漲期權C,花掉現金賬戶K,買入標的物股票,股價為St。投資組合2,放棄行使看跌期權,持有股票,股價為St。
2、股價St小於K:投資組合1,放棄行使看漲期權,持有現金K。投資組合2,行使看跌期權,賣出標的物股票,得到現金K
3、股價等於K:兩個期權都不行權,投資組合1現金K,投資組合2股票價格等於K。
從上面的討論我們可以看到,無論股價如何變化,到期時兩個投資組合的價值一定相等,所以他們的現值也一定相等。根據無套利原則,兩個價值相等的投資組合價格一定相等。所以我們可以得到C+Ke^(-rT)=P+S0。
Ⅳ 關於歐式看漲期權的一道計算題。求解!
(1)看漲期權定價公式:C=SN(d1)-Kexp[-r(T-t)]Nd(d2)
d1=[ln(S/K)+(r+sigma^2/2)*(T-t)]/(sigma*sqrt(T-t))
d2=d1-sigma*sqrt(T-t)
根據題意,S=30,K=29,r=5%,sigma=25%,T-t=4/12=0.3333
d1=[ln(30/29)+(0.05+0.0625/2)*0.3333]/(0.25*sqrt(0.3333))=0.4225
d2=d1-0.25*sqrt(0.3333)=0.2782
N(d1)=0.6637,N(d2)=0.6096
看漲期權的價格C=30*0.6637-29*0.9835*0.6096=2.5251
(2)看跌期權的定價公式:P=Kexp[-r(T-t)][1-Nd(d2)]-S*[1-N(d1)]
看跌期權的價格P=29*0.9835*0.3904-30*0.3363=1.0467
(3)看漲看跌期權平價關系
C-P=S-Kexp[-r(T-t)]
左邊=2.5251-1.0467=1.4784,右邊=30-29*0.9835=1.4784
驗證表明,平價關系成立。
Ⅵ 在無套利市場中,考慮一個兩年期的歐式看跌期權
一年後(第一步後):股價或是60或是40,上升概率為p(後面有定義)
兩年後(第二步後):股價或是72(概率p^2),或是48(概率2*p*(1-p)),或是32(概率為1-p)
風險中性概率p = (exp(r) - 0.8)/(1.2 - 0.8) = 0.62825
期權定價二叉樹:
第二步後:從上到下分別是:0,4,20
第一步後:第一個是( 0 * p + 4 * (1-p) )/exp(r) = 1.41444,第二個是 ( 4 * p + 20 * (1-p) )/exp(r) = 9.46257
最初定價:( 1.41444 * p + 9.46257 * (1-p) )/exp(r) = 4.1913
Ⅶ 一個在期權有效期內不付紅利股票歐式看跌期權, 設S = 10, E = 12, r = 0.1,δ=0.02期權有效期分別取3個月
你這問提問的太專業了,!應該也把前面說清楚點!
Ⅷ 一隻股票的歐式看漲期權喝歐式看跌期權的執行價格均為20美元,且都在3個月後到期 期權價格均為3美元 無風
這位仁兄是做FRM的assig嗎?哈哈。這題不算難,看看書基本上能做出來
Ⅸ 一個歐式看跌期權,t=0時,s=4,t=1時,s=6(up),s=3(down),敲定價格為5,無風險利率為20%,求他的無套利價格.
3後面公式應為(8/3+0.7)*1.2-5+3*1/3=0.04
-5是因為期權被執行 花費5買入一股股票。然後用其中的2/3償還介入股票,將剩餘的1/3按3的市場價賣出,有+3*1/3。
採納吧