導航:首頁 > 科創數據 > amd股票歷史數據

amd股票歷史數據

發布時間:2021-07-28 02:59:10

① 有沒有人記得AMD在01到05年CPU的主要型號和相關數據

「龍」的歷史——2000-2005年AMD處理器編年史

在CPU(處理器)的發展歷程中,AMD亦在其中扮演了主要角色。最先吸引廣大用戶的就是一代經典產品K6及K6-2,而隨著Athlon系列產品的發布,AMD在技術上取得了可抗衡Intel的實力……。考慮到實用性,本文將主要介紹2000-2005年的AMD CPU產品,並以更易理解和收藏的表格加配文說明的形式撰寫(為了便於大家整理收藏,我們將每個系列的產品進行了單獨歸類整理)。 一、Athlon系列、K6及K6-2處理器的出現,給AMD贏得了聲譽,但真正讓AMD崛起的產品還是Athlon系列處理器。
1.Slot A產品 第一款Athlon(速龍,市場俗稱阿斯龍)處理器在1999年6月23日推出,核心代號Pluto(冥王星,又被簡稱為K7核心)。
Pluto(冥王星)核心Athlon採用0.25μm(0.25μm等於250nm)工藝,Slot A介面,支持Alpha系統匯流排協議EV6,擁有2200萬個晶體管,核心面積184平方毫米,核心頻率500MHz~700MHz。它具有100MHz外頻、200MHz前端匯流排,擁有128KB一級緩存、512KB二級緩存。雖然發熱量較大,但擁有較強的浮點處理性能,一經推出便成為Slot 1介面的Pentium Ⅱ/Ⅲ處理器的強勁對手。 但由於製造工藝的落後,讓Pluto核心的Athlon發熱量居高不下,為此AMD很快又推出了採用更先進0.18μm製造工藝的Orion(獵戶座)核心(又被簡稱為K75核心)Athlon處理器。同樣採用Slot A介面,該產品核心面積減少到102平方毫米,核心頻率提高到550MHz~1000MHz,成為處理器歷史上首款突破1GHz大關的經典產品。
這些產品的二級緩存都外接在板載處理器的PCB板上,不僅產品體積大,而且或多或少會影響到處理器的性能。隨著CPU內部整合二級緩存技術的發展,Slot A在短短一年後就讓位於更成熟的Socket A介面產品。
2. Slot A轉向Socket A的產品
當Intel意識到從Socket介面轉向Slot 1隻是過渡的選擇而迅速轉回Socket 423/478後,AMD也隨即從Slot A向Socket A(因有462個針腳,又名Socket 462)介面轉變,而承接這個轉換過程的處理器產品正是2000年6月5日推出的Thunderbird(雷鳥)核心的Athlon處理器。 這系列產品採用0.18μm工藝,陶瓷封裝,擁有出色的超頻能力。有Slot A和Socket A兩種版本,集成了3700萬個晶體管,核心面積也增加為120平方毫米,二級緩存減為256KB(但速度提升為全速,所以性能反而有了很大提高)。
此外,Thunderbird核心Athlon有100MHz和133MHz(主頻在900MHz以上)外頻兩種版本,一般將外頻為100MHz的產品稱為Athlon B版,將133MHz外頻的稱為Athlon C版。Slot A介面的Athlon,二級緩存設計在CPU外部,雖然在主頻上低於同期P4處理器,但憑借良好的整體性能和超頻能力,Socket A Thunderbird(雷鳥)核心的產品成為Athlon全系列產品中的經典產品。
●插文:曇花一現的產品
在桌面處理器發展的歷史長河當中,不僅有Slot A這樣的產品曇花一現,也有像K6-2+、K6-3這樣的Socket 7後續產品如 白駒過隙。這兩款產品上市時間亦在1999-2001年間,有K6-2+/400~K6-2+/550和K6-3/400~K6-3/500等型號,K6-2+具備全速的128KB二級高速緩存,K6-3則具備全速的256KB二級高速緩存,兩者都支持3DNow!指令集,在整體性能上已能壓制住Pentium Ⅱ 400這類產品,成為Socket 7介面產品中的最強產品。但隨著低價的Celeron Ⅱ/Ⅲ及Duron的批量上市,它們對主流用戶已沒有吸引力了。

二、Athlon XP系列
Athlon XP(速龍XP)系列產品堪稱AMD歷代產品中影響最大、跨時最長的產品,AMD一共推出了4種核心的Athlon XP桌面產品。
1.Palomino
第一代Athlon XP採用「Palomino(獨角獸)」核心,2001年10月推出,採用0.18μm製造工藝,核心電壓為1.75V左右,二級緩存為256KB,封裝方式採用OPGA有機塑料,前端匯流排頻率為266MHz,首度採用「PR(Performance Rating)值」方式標注,PR值為1500+至2100+,實際主頻為1333~1733MHz。
●小知識:PR值
大家知道,主頻高低並不能完全代表CPU性能高低。當年,AMD的產品與Intel產品性能相當頻率卻沒有Intel高,為了彌補在頻率上的弱勢,AMD推出了一種CPU性能標稱方法,這就是「PR值」(也就是AMD對處理器型號採用性能換算值,而不再直接以主頻為編號)。比如Athlon XP 1700+的實際主頻為1467MHz,P4 1.7GHz主頻為1.7GHz,雖然AMD的主頻比不上P4的,但是性能和P4 1.7GHz同一級。Intel在頻率提升上受挫後,亦開始採用類似的CPU標注方法,如P4 530、E6300等等。
2.Thoroughbred
當0.13μm製程成為市場主流時,AMD緊隨潮流推出了0.13μm製程採用「Thoroughbred(純種馬)」核心的第二代Athlon XP,核心面積進一步的縮小,從127.6平方毫米縮小到了80.3平方毫米。 Thoroughbred-A核心在2002年4月推出,OPGA封裝,但工藝轉換初期遇到技術問題並沒有顯示出0.13μm工藝的優勢。
所以AMD又推出了改良版的Thoroughbred-B核心,該核心的面積比ughbred-A大了4平方毫米,使用了9個銅制的互連層(Palomino是7個,Thoroughbred-A是8個),降低了電能和熱量的損耗,增強了性能和可超頻性。其中2600+2700+、2800+的產品外頻提高到了166MHz。
3.Barton
第三代Athlon XP採用「Barton(巴頓)」核心,2003年1月推出,PR值為2500+ ~ 3200+, 主頻為 1833MHz ~ 2200MHz。 Barton是在性能優異的thoroughbred-B核心上稍加改進而來的產品,兩者的區別在於二級緩存的容量上,Barton提升至512KB,外頻也跳升至166MHz及200MHz。由於二級緩存增大了一倍,因此晶體管數目也就相應增加(集成5430萬個晶體管,與集成3750萬個晶體管的Thoroughbred相比,多了1680萬個),核心面積增加了31平方毫米。 二級緩存容量的提高意味著在主頻不變的前提下可將應用程序的執行效率顯著提升。Barton以良好的性能及超頻性,成為Athlon系列中又一款經典產品。
4.Thorton 「Thorton」核心是Athlon XP產品中的末代產品。實際上就是Barton省略一半二級緩存,將外頻降為133MHz的產物,它的實際性能和普通Thoroughbred-B Athlon XP差不多。當時對用戶的最大吸引點在於價格更便宜,超頻性亦不錯和可改造。對於一些動手能力較強的DIYer來說,只要用銀漆連接該處理器的L2金橋,就有機會打開另外的256KB緩存,讓Thorton搖身一變也擁有512KB的二級緩存,提升性價比。
●小技巧:如何辨別4種核心Athlon XP 除了可用CPU-Z和WCPUID等軟體來查看區分外,從外觀上也可看出一些端倪,Palomino的核心是正方形,Thoroughbred和Barton/Thorton的核心都是長方形,但Barton/Thorton的核心長度更長。

一代經典Barton核心AthlonXP 2500+

Athlon64系列 源自K8 Hammer(大錘)的Athlon64(速龍64)有Socket 754/939/940三種介面的產品,由於Socket 940(Opteron)產品主要針對伺服器/工作站領域,所以本文不對其作重點介紹。
1.Athlon64(Socket 754)
2003年9月推出的Socket 754 Athlon64產品是AMD 64位平台的組成部分之一,採用754個針腳,有ClawHammer核心(二級緩存512KB/1MB)和Newcastle核心(二級緩存512KB)兩種產品,都採用0.13微米製程,主頻1800MHz~2400MHz。 它的HyperTransport(HT)匯流排頻率為800MHz,不支持雙通道DDR內存。
2.Athlon64(Socket 939) 2004年6月推出的Socket 939 Athlon64是AMD上一代主力產品,在目前市場上仍有很多現貨在出售,它同樣歷經了數代產品。Socket 939介面的Athlon64產品支持雙通道DDR內存及1GHz HyperTransport匯流排等主流規格。其中,ClawHammer核心採用0.13μm SOI製造工藝,具有1MB二級緩存。早期ClawHammer核心的Athlon64處理器只有Socket 754介面產品,但後期AMD又推出了該核心的Athlon64 4000+,採用了Socket 939介面,HyperTransport頻率也提升為1GHz,並且支持雙通道DDR內存。 NewCastle(紐卡斯爾)核心,替代ClawHammer核心的同類產品,集成512KB的二級緩存,採用0.13微米製程SOI技術,核心面積由原來的193平方毫米縮小為144平方毫米,製造成本遠低於ClawHammer核心,內置了雙通道內存控制器。市場接受度遠高於前者。
Winchester(溫徹斯特)核心,最大改進在於將製造工藝由0.13μm提升到了0.09μm,可以有效降低發熱量,同樣採用512KB二級緩存。 跟第一代64位代號ClawHammer的處理器一樣,2005年4月推出的SanDiego(聖地亞哥,E4步進)擁有1MB的二級緩存,最大的賣點在於採用了90納米製程工藝,新增了對SSE3多媒體指令集的支持,並改進了內存控制器的兼容性。
2005年4月,又一代經典產品Venice(威尼斯,E3步進)核心Athlon64上市,用以取代Winchester,Venice核心增強了內存控制器,提供了更有效的Dual Stress Liner數據預取技術,並且正式支持SSE3,可超頻性更為強勁,其它特性同前作。2005年9月,主流Socket 939 Athlon64處理器開始採用E6步進Venice核心,Venice E6核心修正了此前Venice E3核心存在的幾處BUG,處理器的兼容性和穩定性進一步加強。
●小技巧:看「步進」選CPU
大家知道「步進」編號就是CPU不斷修改BUG、增加功能的核心小版本號,一般越靠後的越好,所以很多DIY用戶都知道在挑選CPU時挑選步進更靠後的產品,性能更好更利於超頻。如ClawHammer核心Athlon 64編號最後兩位為「AX」,Winchester是「B1」,NewCastle為「BI」,Venice E3步進是「BP」,SanDiego E4步進是「BN」,Venice E6步進是「BW」等等。

Venice核心的Athlon64

Athlon64 FX系列 Athlon64 FX(速龍64 FX)系列處理器是AMD桌面處理器中的頂級產品,專為追求極限的愛好者而推出。該處理器特意不鎖頻,玩家可自由改變倍頻進行超頻。Athlon64 FX系列處理器分為939介面和940介面兩大類產品。其中,早期940介面的Athlon64 FX處理器基於SledgeHammer核心,HyperTransport匯流排頻率為800MHz,並且需要ECC Registered DDR內存的配合方能使用。 而更主流的939介面的Athlon64 FX處理器有ClawHammer、SanDiego、Toledo三種核心產品,具有1GHz的HyperTransport匯流排頻率,同時支持普通的雙通道DDR內存。
以939介面最高端的Athlon64 FX-60處理器為例,它採用90納米製程,Toledo核心,是第一款基於雙核結構的FX處理器,內置了兩個2.6GHz的核心,每個核心都有1MB L2緩存,每個核心的L2緩存都可以直接被另外一個核心訪問,支持SSE3指令集。主要面對高端消費群和游戲發燒友,價格也高高在上。
Athlon64 FX系列的游戲性能曾經無敵,但隨著性價比更強的Intel「酷睿」系列處理器的上市,Athlon64 FX的市場地位堪憂。
Duron系列
作為對抗賽揚2/3/4代處理器的低端利器,Duron(俗稱「毒龍」,又名「鑽龍」)從2000年6月一上市開始,便成為入門級用戶喜愛的產品之一。
Duron共推出了Spitfire(烈火)、Morgan(野馬)、Applebred(阿帕盧薩馬)三代產品,它們的共同特點就是都只具備64KB二級緩存。
其中Spitfire基於Thunderbird(雷鳥)核心;Morgan基於Palomino核心,加入了對SSE指令的支持,兩者都採用0.18微米製程,100MHz外頻,外觀也基本相同。
而Applebred則可以看作為Thoroughbred-B核心的廉價版本,採用了0.13微米的製造工藝,外頻提升到133MHz,性能比前作有所提升。AMD在Duron產品上都沒有採用PR標稱值,全是真實頻率直接標注。
Sempron系列
2004年6月,AMD發布了新一代的較高性價比產品Sempron(閃龍)系列處理器,有K7(Socket A)和K8(Socket 754)平台的產品,該系列處理器以不錯的性價比在低端市場上受到關注。

1.Socket A Sempron
2004年6月,AMD推出Socket A介面的Sempron處理器,採用了Thoroughbred-B的內核,標配166MHz外頻,256KB二級緩存,整體性能和Thoroughbred-B核心的Athlon XP差不多。
除了Thoroughbred-B核心的產品,Socket A介面的Sempron處理器在市場上還有Thorton、Barton核心的產品,完全可以看作前代Athlon XP在生產工藝和技術進步後的清貨產品,只是換了個新的名字。
其中Barton核心的產品較少見,而PR值和頻率重合的Thoroughbred-B、Thorton核心的產品,其主要區別就是後者的Die(核心)更長。 從命名方式上看,Sempron仍沿用AMD的「PR」命名方式,不過相對於前代的Athlon XP,在標稱一樣的情況下,Sempron處理器的主頻要比Athlon XP處理器稍低。
2.Socket 754 Sempron
Socket 754 Sempron是Athlon64的低端產品,性能接近Athlon64,在市場上較受中、低端用戶追捧。在架構上,Socket 754 Sempron比Athlon XP(及Socket A Sempron)要先進,它支持HyperTransport 800MHz傳輸,同時集成了內存控制器(但只支持單通道內存),令處理器和內存間的延遲時間大大減少,並且支持SSE2指令集,後期產品還支持SSE3、x86-64技術。在游戲測試中,Sempron產品和Intel同檔次的Celeron D處理器相比性能更為強勁。
其中,Sempron 3100+是2004年6月最先發售的754介面的閃龍產品,使用Paris(巴黎)內核,採用130nm工藝製造,集成256KB二級緩存。支持SSE2,集成單通道DDR400內存控制器。性價比並不是很好,很快讓位於後來者。 akville(渥克維爾)內核的Sempron是應用較多的產品,採用了90nm工藝,使其相對130nm製程的Sempron性能更為出色。大部分Oakville核心都採用了256KB的L2緩存,同時支持SSE3技術(2600+、3000+和3300+產品採用128KB二級緩存,沒有提供對SSE3技術的支持)。
而Palermo(巴勒摩)核心的Sempron是後期市場上的主流,它有幾種核心/步進的產品:比如Palermo D0步進(步進,也可稱為「核心」,步進編號就是CPU不斷修改BUG、增加功能的核心小版本號,一般越靠後的越好),是Winchester D0步進的簡化版本,0.09微米SOI工藝,二級緩存128KB或256KB;Palermo E3步進是Venice E3步進的簡化版本,0.09微米SOI工藝,二級緩存128KB或256KB;Palermo E6步進是Venice E6的簡化版本,0.09微米SOI工藝,二級緩存128KB或256KB,最重要的特點就是加入了SSE3和x86-64的支持(所以又被稱為Sempron 64),性價比更好,是2005年市場上入門級用戶選用的主流產品。
●特殊產品:Socket 939介面的Sempron
其實AMD還有Socket 939介面的Sempron,只不過主要提供給OEM廠商(品牌機整機廠商)並不零售,雖然後期一些廠商向零售市場(個人消費市場)「流失」出了此類產品,但終非正規上市產品,所以本文並未將它列入表中。該處理器整合了雙通道內存控制器,內存帶寬較Socket 754處理器有一倍的提升,加上它同樣具備不錯的超頻能力,因此具有不錯的性價比。隨著AM2產品的上市,這款產品在零售市場上肯定會很快銷聲匿跡。

Athlon64 X2系列

2005年4月,AMD推出了針對桌面市場的Socket 939雙核心Athlon64 X2(速龍64 X2)處理器。根據不同檔次,Athlon 64 X2處理器有採用Manchester核心和Toledo核心的兩大產品,可分別被看作Venice和SanDiego核心的雙核版。兩種核心的產品的差別可從核心編號後兩位上分辨出來,Manchester核心最末兩位編號是「BV」,而Toledo是「CD」。
Manchester與Toledo核心內部集成的兩個CPU內核各自擁有獨立的512KB/1MB二級緩存,並分別擁有各自的64KB的一級數據緩存與64KB的一級指令緩存,可通過特殊的SRI介面共同管理內存控制器與HyperTransport匯流排。兩個核心使用同一個內存控制器,內存控制器的設計基本與Athlon64相同,支持雙通道DDR400,兩個核心共享6.4GB/s的內存帶寬,能夠兼容現有的主板,升級十分方便。
在綜合商務處理能力以及多媒體創建等測試方面,Athlon64 X2表現出強勁的商務以及多媒體處理能力,在游戲測試中,雙核心Athlon64 X2性能強於Pentium EE,足以滿足目前中高端用戶或游戲用戶的需求。隨著「酷睿」處理器的上市,Athlon64 X2的價格也降了下來。

●特殊產品:針對OEM的Athlon64 X2 3600+

其實在AMD Socket 939雙核處理器中還有一款Athlon64 X2 3600+,因為它主要針對OEM市場,所以我們並未將它在表中列出。作為AMD最低端的雙核處理器,Athlon64 X2 3600+同樣採用了90nm製造工藝,核心為Manchester,實際主頻2.0GHz。這款廉價的雙核處理器在規格上與Athlon64 X2 3800+基本一致,只是HT匯流排頻率從1000MHz降為800MHz,二級緩存容量也縮減為512KB(2×256KB),但整體性能仍強於Pentium D 805。
結尾:AM2一統江湖
2006年5月23曰,AMD宣布推出基於新AM2平台的產品,面向全球PC愛好者的至尊版處理器AMD雙核速龍64 FX-62處理器,以及AMD雙核速龍64 X2 5000+、速龍64、閃龍處理器等等,宣告略顯紛亂的AMD處理器進入平台(介面)統一時代,也宣告著以DDR2、虛擬化技術為代表的AMD AM2處理器時代的到來。

② 誰知道AMD對CPU的發展史嗎

1969 年 31 歲的 W.J.Sanders 和 Fairchild 公司的 7 個同事合夥成立 AMD 公司。
1970 年 第一個自有產品 Am2501 面世。
1979 年 AMD 公司股票在紐約證券交易所上市。
1982 年 AMD 和英特爾簽訂了關於 iAPX86 系列微機處理器和技術交換協議。設在奧斯汀的第一條生產線投入使用。
1983 年 AMD 推出了 INT.STD.1000 標准,這是當時行業中的最高質量標准。
1985 年 AMD 進入《財富》雜志 500 強。
1991 年 AMD 開始生產 386 系列 CPU ,打破了英特爾的壟斷,當年產銷量超過百萬片。
1992 年 和英特爾長達 5 年的訴訟結束, AMD 獲得生產和銷售 386 系列產品的合作
1993 年 AMD 和富士通公司合作生產內存; AMD 486 系列晶元問世。
1994 年 和 Compaq 形成長期戰略聯盟, Compaq 電腦大量裝配 AMD CPU 。
1994 年 AMD 在微處理器技術論壇年會上展示了 K5 處理器。
1997 年 推出 K6 處理器。
1998 年 引入 K6 - 3D 技術;低價 PC 趨勢給 AMD 帶來新的機遇。
2000 年 AMD 先於英特爾,率先推出了當時運算速度最快的 850 兆赫晶元。
2002 年 4 月 桑德斯辭去首席執行官職務, AMD 結束一個時代。 魯爾茲接任CEO
2003 年 2003 Opteron(皓龍) 發布
2003 2003 全球氣候保護計劃
2003 Athlon 64 發布
2004 90nm - 刀片伺服器
2005 雙內核推出
2006 第三十六家裝配工廠建成

③ 誰能介紹一下AMD公司的歷史嗎與及今天的AMD情況

AMD,這個成立於1969年、總部位於美國加利福尼亞州桑尼維爾的處理器廠商,經過多年不懈地與英特爾的抗爭,終於小有成就了—憑藉此前的AthlonXP及目前K8處理器,AMD這個品牌旗下的處理器產品已經成為了不少消費者心中的「最愛」。

然而你對他目前的處理器產品線又了解多少呢?今天,我們在這里就對各系列的產品進行詳細介紹,希望可以對大家有所幫助。

任何一家企業,如果沒有自己的核心技術,那麼要想在競爭激烈的市場中處於為敗之地幾乎是不可能的。AMD當然深諳此理,其產品正是不斷技術創新中來獲取我們的「心」……

● HyperTransport匯流排

HyperTransport是AMD為K8平台專門設計的高速串列匯流排。它的發展歷史可回溯到1999年,原名為「LDT匯流排」(Lightning Data Transport,閃電數據傳輸)。2001年7月,這項技術正式推出,AMD同時將它更名為HyperTransport。隨後,Broadcom、Cisco、Sun、NVIDIA、ALi、ATI、Apple、Transmeta等許多企業均決定採用這項新型匯流排技術,而AMD也藉此組建HyperTransport開放聯盟,從而將HyperTransport推向產業界。
在基礎原理上,HyperTransport與目前的PCI Express非常相似,都是採用點對點的單雙工傳輸線路,引入抗干擾能力強的LVDS信號技術,命令信號、地址信號和數據信號共享一個數據路徑,支持DDR雙沿觸發技術等等,但兩者在用途上截然不同—PCI Express作為計算機的系統匯流排,而HyperTransport則被設計為兩枚晶元間的連接,連接對象可以是處理器與處理器、處理器與晶元組、晶元組的南北橋、路由器控制晶元等等,屬於計算機系統的內部匯流排范疇。

第一代HyperTransport的工作頻率在200MHz—800MHz范圍,並允許以100MHz為幅度作步進調節。因採用DDR技術,HyperTransport的實際數據激發頻率為400MHz—1.6GHz,最基本的2bit模式可提供100MB/s—400MB/s的傳輸帶寬。不過,HyperTransport可支持2、4、8、16和32bit等五種通道模式,在400MHz下,雙向4bit模式的匯流排帶寬為0.8GB/sec,雙向8bit模式的匯流排帶寬為1.6GB/sec;800MHz下,雙向8bit模式的匯流排帶寬為3.2GB/sec,雙向16bit模式的匯流排帶寬為6.4GB/sec,雙向32bit模式的匯流排帶寬為12.8GB/sec,遠遠高於當時任何一種匯流排技術。

2004年2月,HyperTransport技術聯盟(Hyper Transport Technology Consortium)又正式發布了HyperTransport 2.0規格,由於採用了Dual-data技術,使頻率成功提升到了1.0GHz、1.2GHz和1.4GHz,雙向16bit模式的匯流排帶寬提升到了8.0GB/sec、9.6GB/sec和11.2GB/sec。Intel 915G架構前端匯流排在6.4GB/sec。

目前AMD的S939 Athlon64處理器都已經支持1Ghz Hyper-Transport匯流排,而最新的K8晶元組也對雙工16Bit的1GHz Hyper-Transport提供了支持,令處理器與北橋晶元的傳輸率達到8GB/s。

第2頁:AMD CPU的獨門秘術 - 64位技術

● AMD 64技術

AMD公司於2003年4月22日推出了第一款AMD64 處理器—即用於伺服器和工作站的AMD Opteron處理器。於2003年9月23日推出AMD速龍64處理器—這是用於基於Windows的台式電腦和移動PC機的第豢詈臀ㄒ灰豢?4位處理器。

AMD64技術採用類似於從80286升級在80386的平滑升級方式:一方面可以增加定址位寬,另一方面又具備向下兼容,這樣可以在讓64bit處理器運行在32bit應用環境下,而且64位計算技術可使操作系統和軟體處理更多數據並訪問極大量的內存。

在AMD64架構中,AMD在x86架構基礎上將通用寄存器和SIMD寄存器的數量增加了1倍:其中新增了8個通用寄存器以及8個SIMD寄存器作為原有x86處理器寄存器的擴充。這些通用寄存器都工作在64位模式下,經過64位編碼的程序就可以使用到它們,在32位環境下並不完全使用到這些寄存器,同時AMD也將原有的EAX等寄存器擴展至64位的RAX,這樣可以增強通用寄存器對位元組的操作能力。

與此同時,為了同時支持32位和64位代碼及寄存器,x86-64架構允許處理器工作在以下兩種模式:Long Mode長模式和Legacy Mode傳統模式,Long模式又分為兩種子模式:64位模式和Compatibility Mode兼容模式。目前支持AMD 64的操作系統包括Linux、FreeBSD還有Windows XP 64Bit Edition。

Intel在經過一番變革之後,也推出了類似的x86-64擴展指令集EM64T,從技術架構上有抄襲AMD64之疑!
第3頁:AMD CPU的獨門秘術 - Cool『n』Quiet技術

● Cool『n』Quiet技術

Athlon64系列的另一個關鍵特性是AMD特有的Cool『n』Quiet技術,這是一種智能溫控技術,可以在CPU沒有滿負荷運行的時候降低處理器頻率以及散熱風扇的速度,以此來降低系統的功耗和風扇的噪音。

類似於移動版Athlon 64所採用的PowerNow!技術,它可自動調節處理器的工作頻率,並搭配測溫器件,自動調速散熱器達到降溫靜音效果。可以這樣認為,Athlon 64的CnQ技術幾乎可以與Intel PentiumM中所使用的SpeedStep技術和Transmeta Crusoe中的LongRun技術相媲美。目前除了32位閃龍外,目前S754、S939的Athlon64、64位閃龍處理器都支持此功能。

當然Intel也在基於Prescott核心的處理器中入引入了Thermal Control Circuit溫控技術,效果相對於Cool『n』Quiet技術要更勝一籌。不同於Cool『n』Quiet,Thermal Control Circuit熱量控制電路擁有兩套熱敏二極體。

其中一套熱敏二極體偵測CPU的溫度值並傳輸給主板上的硬體監控系統,這套裝置象傳統的內部溫控技術一樣通過關閉系統來保護CPU,不過只是在緊急情況才會自動關閉。第二套熱敏二極放置在CPU內核溫度最高的部位,幾乎觸及ALU單元,也做為熱量控制電路的一個組成部分,溫控效果更具動態性。
第4頁:AMD CPU的獨門秘術 - 整合內存控制器

● 整合內存控制器

在K8的處理器架構中,將原本內建於北橋晶元的內存控制器部份,轉移到處理器身上,這樣一來內存的規格便建立在使用的處理器上,而不是決定在晶元組身上了!

我們都知道,P4平台是目前唯一支持雙通道DDR2內存架構的桌面平台,擁有的內存帶寬已經比此前的雙通道DDR要高許多,而Athlon 64平台目前能停留在雙通道DDR400的水準。

但由於Athlon 64平台的內存控制器在CPU內部,內存延遲要遠低於、運作效率要遠優於P4平台,而且由於內存控制器將與CPU速度相同,因此內存帶寬是隨著內核頻率提升同步提升的,這使得Athlon 64內存架構是按需配置的。

換句話說玩家在選購K8處理器時,除了運作頻率的考慮外,也得考慮該處理器是支持何種的內存架構。這樣的好處是可以縮短內存傳輸的時間來增些許的效能,缺點是一旦想更換處理器可能連同主機板也要一並換掉。

第5頁:AMD CPU的獨門秘術 - CPU硬體防毒技術

● CPU硬體防毒技術

K8處理器還有一項絕技—NX bit防毒技術。相信很多用戶還對沖擊波病毒心有餘悸,其實,像沖擊波這種蠕蟲病毒就都是靠緩沖區溢出問題興風作浪的,而通過NX bit就可以有效地解決這個問題。

NX bit可以通過在轉換物理地址和邏輯地址的頁面編譯台中添加NX位來實現NX。在CPU進行讀指令操作時,將從實際地址讀出數據,隨後將使用頁面編譯台由邏輯地址轉換為物理地址。如果這個時候NX位生效,會引發數據錯誤。一般情況下,緩沖區溢出攻擊會使內存中的緩沖區溢出,修改數據在堆棧中的返回地址。

一旦改寫了返回地址,則堆棧中的數據在被CPU讀入時就可能運行保存在任意位置的命令。通常由於溢出的數據中包括程序,因此可能會運行非法程序。因此,操作系統在確保堆棧及緩沖區的數據時,只需將該區域的NX位設置為開啟(ON)的狀態即可防止運行堆棧及緩沖區內的程序,其原理就是通過把程序代碼與數據完全分開來防止病毒的執行。

英特爾也在它的「J」系列處理器中加入了類似功能,但其與AMD硬體防毒技術的實現原理是一樣的。

第6頁:AMD CPU的獨門秘術 - 3DNow!、SSE、SSE2一樣不少!

● 3DNow!、SSE、SSE2一樣不少!

3DNOW!是AMD推出的指令集,主要中通過單指令多數據(SIMD)技術來提高CPU的浮點運算性能;它們都支持在一個時鍾周期內同時對多個浮點數據進行處理;都有支持如像MPEG解碼之類專用運算的多媒體指令。與Intel公司的MMX技術側重於整數運算有所不同,3DNow!指令集主要針對三維建模、坐標變換 和效果渲染等三維應用場合,在軟體的配合下,可以大幅度提高3D處理性能。

不過,由於受到Intel在商業上以及Pentium 3/4成功的影響,軟體在支持SSE、SSE2、SSE3上比起3DNow!更為普遍。因此,雖然Intel是自己的冤家,AMD仍繼續推出了增強版Enhanced 3DNow!,引入了SSE、SSE2、SSE3指令集的支持。其中目前基於Venice核心上的新Athlon 64處理器也是目前支持最多SIMD指令集的處理器,包3DNow!,SSE2和SSE3一樣不少。從技術上來看,SSE3對於SEE2的改進非常有限,我們不應該期望SSE3指令集能為新Athlon 64帶來大幅度的性能提升,而且性能提升也需要有軟體支持為前提。
第12頁:AMD全系列桌面處理器點評 - Athlon64 X2

● Athlon64 X2

Athlon 64 X2是AMD的桌面雙核心處理器,競爭對手是英特爾的Pentium D處理器。從架構上來看,Athlon 64 X2除了多個「芯」外與目前的Athlon 64並沒有任何區別。Athlon 64 X2的大多數技術特徵、功能與目前市售的Socket939 Athlon 64處理器是一樣的,而且這些雙核心處理器仍將使用1GHz HyperTransport匯流排與晶元組連接及支持雙通道DDR內存技術。

目前Athlon 64 X2共有Toledo、於Manchester兩個核心版本:其中Toledo核心就相當於是兩個San Diego核心的Athlon 64處理器的集成,而Manchester自然就相當於兩個Venice核心了,兩者主要區別是L2緩存容量之一。AMD Athlon64 x2雙核心處理器共推出五個型號,分別是3800+、4200+、4400+、4600+與4800+,這五款處理器除了在頻率上有2.0Ghz與2.4Ghz的差異外,L2高速緩存也有1MB+1MB與2MB+2MB的差異。

AMD Athlon64 x2雙核心處理器由AMD德國Feb 30晶圓廠生產,晶體管數目為154—233.2 million(視L2緩存容量而定),採用90納米SOI製程設計,除了具備x86-64Bit架構外,並具備了3D NOW! Pro、SEE、SEE2、SEE3指令集,並整合防毒與Cool」Qulet節電技術。

結語:

可以說,AMD目前的產品劃分做的很好,從Socket 754的Sempron、Athlon 64,Socket 939的Athlon 64、Athlon 64 FX,再到雙核心Athlon 64 X2,幾乎每一個價格範圍都有產品,這一方面說明了AMD市場運作的漸漸成熟,我們也期望AMD未來一路走好……
參考資料:http://www.pcpop.com/doc/0/118/118504.shtml

④ Intel和AMD在CPU市場的佔有率分別是多少最好有歷史記錄

星期三, 十月 19, 2005
AMD Desktop處理器單月零售市佔率首度超過Intel
根據美國Current Analysis這篇研究報告,AMD桌上型電腦用處理器在今年9月擁有52%的零售市場佔有率,比Intel處理器多了6%。資料再往前推算,8月份同樣在零售市場也可說超過Intel的成績,這可說是AMD的CPU在近年來的一大勝利,單月份銷量擊敗了一向是王者的Intel。

在美國市場有這樣的轉變,除了64位元處理器AMD比較占優勢外,最主要的原因是微軟的Windows Media Center Edition作業系統的上市,搭配新的Media Center PC主機銷售獲得相當的好評,AMD處理器是這個機型內使用的大宗,達到55%。當中以售價679美元,HP的Pavilion a1130n這一機型賣得最好。

今天台灣微軟也正式會推出Windows Media Center Edition作業系統中文版,相關的新電腦機型也會上市,我想台灣的零售市場雖然不能像美國一樣AMD可以超過Intel的佔有率,但AMD的能見度大大地提升是必然的事實了。

⑤ 詳細介紹一下AMD

不知道你說的是廠商呢 還是它的產品 都說一下吧 說起AMD不能不提它的冤家對頭INTER
Intel與AMD的競爭似乎從他們成立之初就已經註定。

1968年,Intel公司成立,隨後1969年,AMD公司開始正式營業。兩家公司的「斗爭」由此開始。1971年,Intel研製的4004作為第一款微處理器開啟了微型計算機發展的大門。

1978年,Intel出產第一顆16位微處理器8086,同時英特爾還生產出與之相配合的數學協處理器i8087,這兩種晶元使用相互兼容的指令集。人們將這些指令集統一稱之為 x86指令集,該指令系統沿用至今。

接觸電腦比較早的人,一定知道早期的計算機表示方法都是按照X86指令集定義,比如286、386、486。當時各個公司出品的CPU都是一個名稱,只是打的廠牌不同。

在微處理器發展初期,Intel提出的X86體系處理器遠沒有現在風光,當時IBM和蘋果公司都推出了微處理器產品,在結構體繫上互不相同,但性能差距不大,當時Intel對於AMD以及當時Cyrix等公司的態度十分微妙。一方面他們推出的產品和Intel的產品完全兼容,在市場上對其產品銷售有一定影響;另一方面,Intel也在藉助這些公司的產品穩固X86體系的地位。

在Intel與AMD發展的初期,兩家公司還有過鮮為人知的合作關系,為X86體系地位的建立做出了很大貢獻,隨著286 、386的不斷推出,特別是到486的時代,x86體系已經雄霸民用微處理器市場,IBM只有在伺服器市場堅守著自己的領地,蘋果被限制在了某些專業領域維持其獨特的風格。

在這段時間人們對於處理器的品牌概念十分淡漠,當時的消費者只知道購買的的康柏的486或者IBM的486,並不關心處理器的Intel還是AMD。Intel憑借標准提出者的身份,一直是新產品的首發者,並且在市場份額上保持著老大的地位。AMD只能跟在對手背後以完全兼容作為生存的標准,更像是一家生產廠,在競爭上也只能以低價作為俄日裔的手段,這也是為什麼AMD一直以來跟人的感覺都是一個「高性價比」品牌,其實就是低價產品的美化說法。

被迫改變

1993年,一個值得紀念的年份。在這一年,Intel一改以往的產品命名方式,對於人們認為該命名為586的產品,注冊了獨立的商標——Pentium(奔騰)。此舉不僅震驚了市場,更是給了AMD當頭一棒,AMD到了必須走一條新路的時刻。

從Pentium(奔騰)開始,Intel的宣傳攻勢不斷加強,當時提出的「Intel Inside」口號,現在已經深入人心,經歷了Pentium II(奔騰2)和Pentium III(奔騰3)兩代產品,Intel已經成為微處理器市場的霸主,一直同AMD並肩作戰的Cyrix公司在Intel的強勢下無奈選擇下嫁VIA公司,退出了市場競爭。

面對Intel的Pentium(奔騰)系列處理器,AMD在產品上雖有K5、K6等系列對抗,但從性能上一直難與Intel抗衡,只有憑借低廉的價格在低端市場勉強維持生計,眼看著Intel不斷擴大其市場佔有率。作為一家科技公司,AMD終於醒悟單純的價格並不能使其產品得到用戶的認可,擁有技術才是關鍵。

1999年,AMD推出了Athlon系列處理器,一舉贏得了業界與消費者的關注,AMD徹底擺脫了自己跟隨著的身份,腰身成為敢與Intel爭鋒的挑戰者。也是在這一年,Intel放棄了使用多年的處理器介面規格,AMD也第一次沒有跟隨Intel的變化,一直沿用原有介面規格,標志著AMD與Intel的競爭進入了技術時代。

新的開始

從Athlon開始,AMD似乎找到了感覺,接連在技術上與Intel展開競爭,率先進入G時代,無疑是這一段交鋒中,AMD最值得驕傲的一點。在比拼主頻的這段時間,不僅讓對手再不敢小覷這個對手,也讓消費者認識了AMD,市場份額雖然還處在絕對劣勢,但是在很多的調查中,AMD已經一舉超過Intel成為消費者最關心的CPU品牌。

接下來AMD發起了一系列的技術攻勢,在Intel推出奔奔騰4在主頻上與AMD拉開距離後,AMD極力宣傳CPU效能概念,在穩住市場的同時還概念了消費者盯住主頻的消費習慣,為以後的發展奠定了良好的基礎。

2003年,AMD首先提出了64位的概念,打了Intel一個措手不及。當時64位技術還僅限於高端伺服器處理器產品,在民用領域推行64位技術,使AMD第一次作為技術領先者在競爭中取得主動。Intel當時十分肯定地說,64位技術進入民用市場最少還要幾年時間,但是1年後,面對市場趨勢不得不匆忙宣布推出64位處理器。

在這次64位的比拼中,AMD無論在時間還是技術上都佔有明顯優勢,可惜天公不作美,由於微軟公司的拖沓比預計晚了一年半的時間才推出支持64位的操作系統,而此時Intel的64微處理器也「恰好」上市了,AMD得到了一片叫好聲但是「票房」慘淡,所幸AMD也許早料到了這一點,其向下兼容的64位技術在32位應用中性能不俗,沒有落得更大遺憾。

在64位沒有取得先機的Intel,在雙核處理器上再下文章,領先AMD一個月推出雙核產品。AMD現在早已不是當初那個跟在人後的小公司,在推出自己的雙核產品後,拋出了真假雙核的辯論。

更令業界震驚的是2005年6月底,AMD毅然把Intel告上了法庭,直指對手壟斷行業。對於這場官司的勝負暫且不論,AMD的這種態度已經說明了一切,不再依靠跟隨對手,不再依靠低價搶占市場,AMD現在要求的事平等,是站在同一賽場上的對手。

在法庭外的市場上,AMD再一次拿起了價格這柄利器。在過去的幾年中,由於主頻競爭發展緩慢,因而Intel公司和AMD公司之間幾乎沒有進行過大幅度的降價競爭。但是隨著雙核處理技術的發展,兩家公司與業內的其他競爭對手都提高了生產的效率,產品價格重新成為了Intel公司與AMD公司爭奪市場的主要戰場。

市場調研機構Mercury Research公布的x86處理器市場2005年第一季調查。結果表示Intel還是這個市場的頭龍占市場81.7%,比上季下降0.5%,而AMD為16.9%上升了0.3%,在戰斗中兩個對手都在不斷成長,似乎AMD要走的路還要更遠一點。
產品對比
AMD與Intel的產品線概述

AMD目前的主流產品線按介面類型可以分成兩類,分別是基於Socket 754介面的中低端產品線和基於Socket 939介面的中高端產品線;而按處理器的品牌又分為Sempron、Athlon 64、Opteron系列,此外還有雙核的Athlon 64 X2系列,其中Sempron屬於低端產品線,Athlon 64,Opteron和Athlon 64 X2屬於中高端產品線。這樣看來,AMD家族同一品牌的處理器除了介面類型不同之外,同時還存在著多種不同的核心,這給消費者帶來了不小的麻煩。可以說AMD現在的產品線是十分混亂的。與AMD復雜的產品線相比,Intel的產品線可以說是相當清晰的。Intel目前主流的處理器都採用LGA 775介面,按市場定位可以分成低端的Celeron D系列、中端的Pentium 4 5xx系列和高端的Pentium 4 6xx系列、雙核的Pentium D系列。除了Pentium D處理器以外,其他目前在市面上銷售的處理器都是基於Prescott核心,主要以頻率和二級緩存的不同來劃分檔次,這給了消費者一個相當清晰的印象,便於選擇購買。(鑒於目前市場上銷售的CPU產品都已經全面走向64位,32位的CPU無論在性能或者價格上都不佔優勢,因此我們所列舉的CPU並不包括32位的產品。同樣道理,AMD平台的Socket A介面和Intel的Socket 478介面的產品都已經在兩家公司的停產列表之上,而AMD的Athlon 64 FX系列和Intel的Pentium XE/EE系列以及伺服器領域的產品也不容易在市面上購買到,因此也不在本文談論范圍之內。)

2. AMD與Intel產品線對比

雙核處理器可以說是2005年CPU領域最大的亮點。畢竟X86處理器發展到了今天,在傳統的通過增加分支預測單元、緩存的容量、提升頻率來增加性能之路似乎已經難以行通了。因此,當單核處理器似乎走到盡頭之際, Intel、AMD都不約而同地推出了自家的雙核處理器解決方案:Pentium D、Athlon 64 X2!

所謂雙核處理器,簡單地說就是在一塊CPU基板上集成兩個處理器核心,並通過並行匯流排將各處理器核心連接起來。雙核其實並不是一個全新概念,而只是CMP(Chip Multi Processors,單晶元多處理器)中最基本、最簡單、最容易實現的一種類型。

處理器協作機制:

AMD Athlon 64 X2

Athlon 64 X2其實是由Athlon 64演變而來的,具有兩個Athlon 64核心,採用了獨立緩存的設計,兩顆核心同時擁有各自獨立的緩存資源,而且通過「System Request Interface」(系統請求介面,簡稱SRI)使Athlon 64 X2兩個核心的協作更加緊密。SRI單元擁有連接到兩個二級緩存的高速匯流排,如果兩個核心的緩存數據需要同步,只須通過SRI單元完成即可。這樣子的設計不但可以使CPU的資源開銷變小,而且有效的利用了內存匯流排資源,不必佔用內存匯流排資源。

Pentium D

與Athlon 64 X2一樣,Pentium D兩個核心的二級高速緩存是相互隔絕的,不過並沒有專門設計協作的介面,而只是在前端匯流排部分簡單的合並在一起,這種設計的不足之處就在於需要消耗大量的CPU周期。即當一個核心的緩存數據更改之後,必須將數據通過前端匯流排發送到北橋晶元,接著再由北橋晶元發往內存,而另外一個核心再通過北橋讀取該數據,也就是說,Pentium D並不能像Athlon 64 X2一樣,在CPU內部進行數據同步,而是需要通過訪問內存來進行同步,這樣子就比Athlon 64 X2多消耗了一些時間。

二級緩存對比:

二級緩存對於CPU的處理能力影響不小,這一點可以從同一家公司的產品線上的高低端產品當中明顯的體現出來。二級緩存做為一個數據的緩沖區,其大小具有相當重大的意義,越大的緩存也就意味著所能容納的數據量越多,這就大大地減輕了由於匯流排與內存的速度無法配合CPU的處理速度,而浪費了CPU的資源。

事實上也證明了,較大的高速緩存意味著可以一次交換更多的可用數據,而且還可以大大降低高速緩存失誤情況的出現,以及加快數據的訪問速度,使整體的性能更高。

就目前而言,AMD的CPU在二級高速緩存的設計上,由於製造工藝的原因,還是比較小,高端的最高也只達到2M,不少中低端產品只有512K,這對於數據的處理多多少少會帶來一些不良的影響,特別是處理的數據量較大的時候。Intel則相反,在這方面比較重視,如Pentium D核心內部便集成了2M的二級高速緩存,這在處理數據的時候具有較大的優勢,在高端產品中,甚至集成4M的二級高速緩存,可以說是AMD的N倍。在一些實際測試所得出來的數據也表明,二級緩存較大的Intel分數要高於二級緩存較小的AMD不少。

內存架構對比:

由Athlon 64開始,AMD便開始採用將內存控制器集成於CPU內核當中的設計,這種設計的好處在於,可以縮短CPU與內存之間的數據交換周期,以前都是採用內存控制器集成於北橋晶元組的設計,改成集成於CPU核心當中,這樣一來CPU無需通過北橋,直接可以對內存進行訪問操作,在有效的提高了處理效率的同時,還減輕了北橋晶元的設計難度,使主板廠商節約了成本。不過這種設計在提高了性能的同時,也帶來了一些麻煩,一個是兼容性問題,由於內存控制器集成於核心之內,不像內置於北橋晶元內部,兼容性較差,這就給用戶在選購內存的時候帶來一些不必要的麻煩。

除了內存兼容性較差之外,由於採用核心集成內存控制器的緣故,對於內存種類的選擇也有著很大的制約。就現在的內存市場上來看,很明顯已經像DDR2代過渡,而到目前為止Athlon 64所集成的還只是DDR內存控制器,換句話說,現有的Athlon 64不支持DDR2,這不僅對性能起到了制約,對用戶選擇上了造成了局限性。而Intel的CPU卻並不會有這樣子的麻煩,只需要北橋集成了相應的內存控制器,就可以輕松的選擇使用哪種內存,靈活性增強了不少。

還有一個問題,如若用戶採用集成顯卡時,AMD的這種設計會影響到集成顯卡性能的發揮。目前集成顯卡主要是通過動態分配內存做為顯存,當採用AMD平台時,集成在北橋晶元當中的顯卡核心需要通過CPU才能夠對內存操作,相比直接對內存進行操作,延遲要長許多。

平台帶寬對比:

隨著主流的雙核處理器的到來,以及945、955系列主板的支持,Intel的前端匯流排將提升到1066Mhz,配合上最新的DDR2 667內存,將I/O帶寬進一步提升到8.5GB/S,內存帶寬也達到了10.66GB/S,相比AMD目前的8.0GB/S(I/O帶寬)、6.4GB/S(內存帶寬)來說,Intel的要遠遠高出,在總體性能上要突出一些。

功耗對比:

在功耗方面,Intel依然比較AMD的要稍為高一些,不過,近期的已經有所好轉了。Intel自推出了Prescott核心,由於採用0.09微米製程、集成了更多的L2緩存,晶體管更加的細薄,從而導致漏電現象的出現,也就增加了漏電功耗,更多的晶體管數量帶來了功耗及熱量的上升。為了改進Prescott核心處理器的功耗和發熱量的問題,Intel便將以前應用於移動處理器上的EIST(Enhanced Intel Speedstep Technolog)移植到目前的主流Prescott核心CPU上,以保證有效的控制降低功耗及發熱量。

而AMD方面則加入了Cool 『n』 Quiet技術,以降低CPU自身的功耗,其工作原理與Intel的SpeedStep動態調節技術相似,都是通過調節倍頻等等來實現降低功耗的效果。

實際上,Intel的CPU功率之所以目前會高於AMD,其主要的原因在於其內部集成的晶體管遠遠要比AMD的CPU多得多,再加上工作頻率上也要比AMD的CPU高出不少,這才會變得功率較大。不過在即將來臨的Intel新一代CPU架構Conroe,這個問題將會得到有效的解決。其實Conroe是由目前的Pentium M架構變化而來的,它延續了Pentium M的絕大多數優點,如功耗更加低,在主頻較低的情況下已然能夠獲得較好的性能等等這些。可以看出,未來Intel將把移動平台上的Conroe移植到桌面平台上來,取得統一。

流水線對比:

自踏入P4時代以來,Intel的CPU內部的流水線級要比AMD的高出一些。以前的Northwood和Willamette核心的流水線為20級,相對於當時的PIII或者Athlon XP的10級左右的流水線來說,增長了幾乎一倍。而目前市場上採用Proscott核心CPU流水線為31級。很多人會有疑問,為何要加長流水線呢?其實流水線的長短對於主頻影響還是相當大的。流水線越長,頻率提升潛力越大,若一旦分支預測失敗或者緩存不中的話,所耽誤的延遲時間越長,為此在Netburst架構中,Intel將8級指令獲取/解碼的流水線分離出來,而Proscott核心有兩個這樣的8級流水線,因此嚴格說起來,Northwood和Willamette核心有28級流水線,而Proscott有39級流水線,是現在Athlon 64(K8)架構流水線的兩倍。

相信不少人都知道較長流水線不足之處,不過,是否有了解過較長流水線的優勢呢?在NetBurst流水線內部功能中,每時鍾周期能夠處理三個操作數。這和K7/K8是相同的。理論上,NetBurst架構每時鍾執行3指令乘以時鍾速度,便是最後的性能,由此可見頻率至上論有其理論基礎。以此為准來計算性能的話,則K8也非NetBurst對手。不過影響性能的因素有很多,最主要的就是分支預測失敗、緩存不中、指令相關性三個方面。

這三個方面的問題每個CPU都會遇到,只是各種解決方法及效果存在著差異而已。而NetBurst天生的長流水線既是它的最大優勢,也是它的最大劣勢。如果一旦發生分支預測失敗或者緩存不中的情況,Prescott核心就會有39個周期的延遲。這要比其他的架構延遲時間多得多。不過由於其工作主頻較高,加上較大容量的二級高速緩存在一定程度上彌補了NetBurst架構的不足之處。不過流水線的問題在Intel的新一代CPU架構Conroe得到了較好的解決,這樣子以來,大容量的高速緩存,以及較低的流水線,配合雙核心設計,使得未來的Intel CPU性能更加優異。

「真假雙核」

在雙核處理器推廣的過程中,我們聽到了一些不和諧的音符:AMD宣揚自己的雙核Opteron和Athlon-64 X2才符合真正意義上的雙核處理器准則,並隱晦地表示Intel雙核處理器只是「雙芯」,暗示其為「偽雙核」,聲稱自己的才是「真雙核」,真假雙核在外界引起了爭議,也為消費者的選擇帶來了不便。

AMD認為,它的雙核之所以是「真雙核」,就在於它並不只是簡單地將兩個處理器核心集成在一個硅晶片(或稱DIE)上,與單核相比,它增添了「系統請求介面」(System Request Interface,SRI)和「交叉開關」(Crossbar Switch)。它們的作用據AMD方面介紹應是對兩個核心的任務進行仲裁、及實現核與核之間的通信。它們與集成的內存控制器和HyperTransport匯流排配合,可讓每個核心都有獨享的I/O帶寬、避免資源爭搶,實現更小的內存延遲,並提供了更大的擴展空間,讓雙核能輕易擴展成為多核。

與自己的「真雙核」相對應,AMD把英特爾已發布的雙核處理器——奔騰至尊版和奔騰D處理器採用的雙核架構稱之為「雙芯」。AMD稱,它們只是將兩個完整的處理器核心簡單集成在一起,並連接到同一條帶寬有限的前端匯流排上,這種架構必然會導致它們的兩個核心爭搶匯流排資源、從而影響性能,而且在英特爾這種雙核架構上很難添加更多處理器核心,因為更多的核心會帶來更為激烈的匯流排帶寬爭搶。

而根據前面我們提到CMP的概念,筆者認為英特爾和AMD的雙核處理器,以及它們未來的多核處理器實際上都屬於CMP架構。而對雙核處理器的架構或標准,業界並無明確定義,稱雙核處理器存在「真偽」純屬AMD的一家之言,是一種文字游戲,有誤導消費者之嫌。

目前業界對雙核處理器的架構並沒有共同標准或定義,自然也就沒有什麼真偽之分。CMP的原意就是在一個處理器上集成多個處理器核心,在這一點上AMD與英特爾並無分別,不能說自己的產品集成了仲裁等功能就是「真雙核」,更沒有理由稱別人的產品是「雙芯」或「偽雙核」。此外在不久前AMD舉辦的「我為雙核狂」的活動中,有不少玩家指出,AMD的雙核處理器在面對多任務環境下,無法合理分配CPU運算資源,導致運行同樣的程序卻會得到不同的時間,AMD的雙核並不穩定。從不少媒體的評測還可以看到,AMD的雙核在單程序運行的效率要高於Intel處理器,但是在多任務的測試中則全面落後!

由此可見,對於真假雙核之說,筆者認為只是一種市場的抄作,並不是一種客觀的性能表現。從真正的雙核應用上來看(雙核的發展主要是由於各種程序的同時運行,即多程序同時運行的要求),Intel的雙核更符合多程序的發展需求。

高性能的基石——Intel及AMD平台對比

二、高性能的基石——Intel及AMD平台對比

看完上面的介紹,我們可以看到無論Intel還是AMD都提供了豐富的產品,而至於二者在處理器架構上的優劣畢竟不是片言隻字可以言明,也不可以片面的說誰的架構更為優勝,因為二者都有各自的優勢之處,也有其不足。但無論如何,對於CPU來說,一個產品優秀與否,性能如何,都必須要有其發揮的平台,接下來,我們來看看兩家產品的主流平台。

1. 平台對比之Intel篇

在剛過去的2005年中,Intel處理器在產品規格與規劃兩方面對整個晶元技術的發展都做出了巨大的貢獻,對用戶的最終選擇有著直接的影響。首先,盡管LGA775介面較脆弱的問題曾一度過引發爭議,但桌面級CPU從Socket 478向LGA 775過渡已是不可逆轉;其次,處理器的FSB頻率再一次被拉高,1066MHz已成為新一代處理器的標准;再次,雙核CPU的上市引發了不小的轟動,普及也只是時間的問題。與之對應,第一代LGA 775介面晶元組——Intel 915/925系列已是昨日黃花,945/955系列已經作為新的主流取而代之。集成HD音效技術、雙通道DDR2內存架構、千兆網卡、SATA2技術,RAID5等一系列過去只能在高端主板上才有的技術現在已經成為標准配置。在PCI-E顯卡介面已經成為市場主流的時候,市場上有了更多的廠商加入其中,Intel晶元組一家獨大的情況已經有所改變,NVIDIA和ATI都推出了相應產品,功能規格毫不遜色;VIA和SIS等台系廠商也有其「特色產品」,市場空前繁榮。 Intel Intel處理器搭配Intel晶元組一向是DIYer的首選。2005年,Intel沿襲了其一貫的特點:新品推出速度快,檔次定位明確,新技術大量使用等等。目前Intel的高端桌面晶元組當屬955X和975X系列,作為高端產品,955X具備了945系列的主要功能,但拋棄了過時的533MHz FSB。加之其支持8GB內存、ECC校驗技術和內存加速技術,這些特點令其與主流產品拉開了距離。975X則是955X的加強版,可以完美支持Intel所有桌面處理器,包括Pentium EE。更重要的是支持雙PCI-E 8X顯卡並行技術。925X/XE是上一代的高端產品,但由於缺乏對雙核心的支持,令其瞬間失勢。

主流市場一向是Intel的中流砥柱。945系列是其鞏固這一市場的利器,包括945P/PL/G/GZ等型號,分別用於不同需求的用戶。945系列支持FSB 533-1066的處理器,包括Celeron D、Pentium 4和Pentium D等在內的Intel主流CPU,945系列已全面轉向DDR2,並支持Intel Flex Memory技術,可使不同容量的內存構成雙通道模式,兼容性得以提高。

隨著945系列的大量鋪貨,曾經的主流產品915系列不可避免的被推到低端市場。915系列包括915P/PL/G/GV/GL五種型號,針對不同的用戶,但目前該系列產品存在不同程度的缺貨,售價與945系列相差也不是太大,而且也傳言Intel即將將其停產,故不推薦購買。

NVIDIA目前NVIDIA發布的Intel平台的晶元組有NF4 SLI IE,NF4 SLI XE,NF4 Ultra等幾款,都是作為中高端產品出現在市場的,其中的NF4 SLI IE更是第一個把NVIDIA在AMD平台上無限風光的SLI技術引入了INTEL平台,讓INTEL平台也能實現雙顯卡運作的模式。而更具革命性的是,NF4 SLI IE晶元組在打開雙顯卡模式的時候,能夠運行在PCI-E 16X+16X的高顯示帶寬之上,性能提升效果更加明顯。這樣的技術優勢,即便是說AMD平台上的NF4 SLI晶元組也已經難以實現(NF4 SLI只能打開PCI-E 8X+8X的帶寬),缺乏技術授權的眾INTEL晶元組更是無可奈何。

ATI目前ATI在Intel平台的主力晶元組是Radeon Xpress 200 For Intel platforms系列,而支持交火技術的Radeon Xpress 200 CrossFire則定位高端。Radeon Xpress 200 For Intel platforms晶元組的主板採用南北橋分離設計,包括RS400、RC400、RC410和RXC410四款產品。北橋集成X300顯示核心,並具備Intel平台的幾乎所有主流技術支持,兼容性十分強大。Radeon Xpress 200 CrossFire在Intel平台的產品稱作RD400,基本架構與RS400相仿,最大的特點是支持ATI的CrossFire顯卡並行技術。但ATI的自家的南橋功能有限,眾多廠商會採用ULi M1573/1575替代作為折衷方案。

VIA、SIS VIA和SiS在Intel平台也是有相當資歷的元老級晶元組生產商,二者主要為Intel平台提供中低端的產品。VIA目前在Intel平台的主要產品有PT880 PRO和PT894,集成顯卡的最新產品為P4M890。SiS則提供SiS 656/649等產品。 2. 平台對比之AMD篇

隨著K7核心退出歷史舞台,K8處理器已經順利完成過渡。與此同時,Socket 754和Socket 939平台也發生著分化——Socket939定位於主流桌面和入門級伺服器市場,Socket 754則定位於低端平台。與之搭配的晶元組延續著顯示核心市場的明爭暗鬥——NVIDIA於ATI的大戰愈演愈烈,加上久經沙場的VIA和SiS,AMD處理器配套晶元組市場從未如此熱鬧。

NVIDIA

NVIDIA是AMD平台中晶元組最多的一家廠商,從集成顯示核心的入門級產品到支持顯卡並行技術的高端產品都可以找到NVIDIA的身影。可以說NVIDIA晶元組是AMD平台中占絕大部分市場份額的產品,也是眾多DIYer眼中AMD處理器的最佳搭檔。

目前NVIDIA在AMD平台的晶元組包括NF4-4X、NF4標准版、NF4 Ultra、NF4 SLI以及整合圖形核心的C51系列。其中NF4-4X主要採用Socket 754介面,針對低端及入門級用戶,主要搭配Socket 754介面的Sempron和Athlon 64處理器。NF4 Ultra和NF4 SLI則主要採用Socket 939介面,針對中高端用戶。其中部分產品更是用料十足,配置豪華,是骨灰級玩家的選擇。C51系列包括C51G(GeForce 6100)和C51PV(GeForce 6150)兩種北橋晶元,搭配nForce 410 MCP和nForce 430 MCP兩種南橋,為AMD提供整合顯示晶元的主板。其集成的顯示晶元性能已經不再是雞肋,緊跟主流顯卡腳步。

ATI

ATI作為NVIDIA在顯卡市場的主要競爭對手,在AMD平台中的角色也非常強,但競爭力就要比在顯卡市場下降不少。作為對NVIDIA SLI技術的回應,ATI推出了Crossfie晶元組與之抗衡,而且其雙顯卡並行的限制比SLI要寬松很多, Crossfie技術對游戲的兼容性很好,幾乎每款游戲都可以從中獲得性能提升。但目前在市面上可以買到的Crossfie主板遠沒有SLI的多,ATI在這方面推廣力度似乎不夠。此外在中低端市場,ATI提供了Radeon Xpress 200系列,包括整合顯示核心的RS480/482和採用獨立顯卡的RX480,支持單PCI-E x16顯卡插槽,支持兩個以上的SATA介面,支持千兆網卡,性能中規中舉。

平台綜述

目前市場上Intel和AMD平台的主要產品都已經略為介紹,我們可以看到,AMD處理器目前使用的晶元組絕大多數由其合作夥伴設計,比如nVidia、ATI、VIA等等,他們設計好後再找其他企業代工生產。這樣一來,AMD在實際的市場操作方面就有很多困難,比如說在平台的整體價格控制方面無法做到統一調控,另外很可能會出現主板供應跟不上CPU的市場出貨率,或者大於CPU的供應量等等。雖然AMD本身也有配合自己產品的平台,但是高昂的成本、不實用的功能也只能使它成為評測室中的一道風景。

從另外一個角度看,AMD的主流處理器產品擁有Socket 754和Socket 939兩個平台,而在兩個平台的產品針對不同的消費者

⑥ AMD CPU發展史

對於需要高性能計算和 IT 基礎設施的企業用戶來說, AMD 提供一系列解決方案。 o 1981年,AMD 287 FPU ,使用Intel 80287核心。產品的市場定位和性能與Intel 80287基本相同。也是迄今為止AMD公司 唯一生產過的FPU產品,十分稀有。 o AMD 8080(1974年)、8085(1976年)、8086(1978年)、8088(1979年)、80186(1982年)、80188、80286微處理器,使用Intel 8080核心。產品的市場定位和性能與Intel同名產品基本相同。 o AMD 386(1991年)微處理器,核心代號P9,有SX和DX之分,分別與Intel 80386SX和DX相兼容的微處理器。AMD 386DX與Intel 386DX同為32位處理器。不同的是AMD 386SX是一個完全的16位處理器,而Intel 386SX是一種准32位處理器----內部匯流排32位,外部16位。AMD 386DX的性能與Intel 80386DX相差無己,同為當時的主流產品之一。AMD也曾研發了386 DE等多種型號基於386核心的嵌入式產品。 o AMD 486DX(1993年)微處理器,核心代號P4,AMD自行設計生產的第一代486產品。而後陸續推出了其他486級別的產品,常見的型號有:486DX2,核心代號P24;486DX4,核心代號P24C;486SX2,核心代號P23等。其它衍生型號還有486DE、486DXL2等,比較少見。AMD 486的最高頻率為120MHz(DX4-120),這是第一次在頻率上超越了強大的競爭對手Intel。 o AMD 5X86(1995年)微處理器,核心代號X5,AMD公司在486市場的利器。486時代的後期,TI(德州儀器)推出了高性價比的TI486DX2-80,很快佔領了中低端市場,Intel也推出了高端的Pentium系列。AMD為了搶占市場的空缺,便推出了5x86系列CPU(幾乎是與Cyrix 5x86同時推出)。它是486級最高頻的產品----33*4、133MHz,0.35微米製造工藝,內置16KB一級回寫緩存,性能直指Pentium75,並且功耗要小於Pentium。 o AMD K5(1997年)微處理器,1997年發布。因為研發問題,其上市時間比競爭對手Intel的"經典奔騰"晚了許多,再加上性能並不十分出色,這個不成功的產品一度使得AMD的市場份額大量喪失。K5的性能非常一般,整數運算能力比不上Cyrix x86,但比"經典奔騰"略強;浮點預算能力遠遠比不上"經典奔騰",但稍強於Cyrix 6x86。綜合來看,K5屬於實力比較平均的產品,而上市之初的低廉的價格比其性能更加吸引消費者。另外,最高端的K5-RP200產量很小(慣例吧:)並且沒有在中國大陸銷售。 o AMD K6(1997年)處理器是與Intel PentiumMMX同檔次的產品。是AMD在收購了NexGen,融入當時先進的NexGen 686技術之後的力作。它同樣包含了MMX指令集以及比Pentium MMX整整大出一倍的64KB的L1緩存!整體比較而言,K6是一款成功的作品,只是在性能方面,浮點運算能力依舊低於Pentium MMX。 o K6-2(1998年)系列微處理器曾經是AMD的拳頭產品,現在我們稱之為經典。為了打敗競爭對手Intel,AMD K6-2系列微處理器在K6的基礎上做了大幅度的改進,其中最主要的是加入了對"3DNow!"指令的支持。"3DNow!"指令是對X86體系的重大突破,此項技術帶給我們的好處是大大加強了計算機的3D處理能力,帶給我們真正優秀的3D表現。當你使用專門"3DNow!"優化的軟體時就能發現,K6-2的潛力是多麼的巨大。而且大多數K6-2並沒有鎖頻,加上0.25微米製造工藝帶給我們的低發熱量,能很輕松的超頻使用。也就是從K6-2開始,超頻不再是Intel的專有名詞。同時,.K62也繼承了AMD一貫的傳統,同頻型號比Intel產品價格要低25%左右,市場銷量驚人。K6-2系列上市之初使用的是"K6 3D"這個名字("3D"即"3DNow!"),待到正式上市才正名為"K6-2"。正因為如此,大多數K6 3D為ES(少量正式版,畢竟沒有量產:)。K6 3D曾經有一款非標準的250MHz產品,但是在正式的K6-2系列中並沒有出現。K6-2的最低頻率為200MHz,最高達到550MHz。 o AMD於1999年2月推出了代號為"Sharptooth"(利齒)的K6-3(1998年)系列微處理器,它是AMD推出的最後一款支持Super架構和CPGA封裝形式的CPU。K6-3採用了0.25微米製造工藝,集成256KB二級緩存(競爭對手Intel的新賽揚是128KB),並以CPU的主頻速度運行。而曾經Socket 7主板上的L2此時就被K6-3自動識別為了L3,這對於高頻率的CPU來說無疑很有優勢,雖然K6-3的浮點運算依舊差強人意。因為各種原因,K6-3投放市場之後難覓蹤跡,價格也並非平易近人,即便是更加先進的K6-3+出現之後。 oAMD於2001年10月推出了K8架構。盡管K8和K7採用了一樣數目的浮點調度程序窗口(scheling window ),但是整數單元從K7的18個擴充到了24個,此外,AMD將K7中的分支預測單元做了改進。global history counter buffer(用於記錄CPU在某段時間內對數據的訪問,稱之為全歷史計數緩沖器)比起Athlon來足足大了4倍,並在分支測錯前流水線中可以容納更多指令數,AMD在整數調度程序上的改進讓K8的管線深度比Athlon多出2級。增加兩級線管深度的目的在於提升K8的核心頻率。在K8中,AMD增加了後備式轉換緩沖,這是為了應對Opteron在伺服器應用中的超大內存需求。 oAMD於2007下半年推出K10架構。 採用K10架構的 Barcelona為四核並有4.63億晶體管。Barcelona是AMD第一款四核處理器,原生架構基於65nm工藝技術。和Intel Kentsfield四核不同的是,Barcelona並不是將兩個雙核封裝在一起,而是真正的單晶元四核心。

⑦ AMD的發展歷史

計算產品
對於需要高性能計算和 IT 基礎設施的企業用戶來說, AMD 提供一系列解決方案。 o 1981年,AMD 287 FPU ,使用Intel 80287核心。產品的市場定位和性能與Intel 80287基本相同。也是迄今為止AMD公司 唯一生產過的FPU產品,十分稀有。 o AMD 8080(1974年)、8085(1976年)、8086(1978年)、8088(1979年)、80186(1982年)、80188、80286微處理器,使用Intel 8080核心。產品的市場定位和性能與Intel同名產品基本相同。 o AMD 386(1991年)微處理器,核心代號P9,有SX和DX之分,分別與Intel 80386SX和DX相兼容的微處理器。AMD 386DX與Intel 386DX同為32位處理器。不同的是AMD 386SX是一個完全的16位處理器,而Intel 386SX是一種准32位處理器----內部匯流排32位,外部16位。AMD 386DX的性能與Intel 80386DX相差無己,同為當時的主流產品之一。AMD也曾研發了386 DE等多種型號基於386核心的嵌入式產品。 o AMD 486DX(1993年)微處理器,核心代號P4,AMD自行設計生產的第一代486產品。而後陸續推出了其他486級別的產品,常見的型號有:486DX2,核心代號P24;486DX4,核心代號P24C;486SX2,核心代號P23等。其它衍生型號還有486DE、486DXL2等,比較少見。AMD 486的最高頻率為120MHz(DX4-120),這是第一次在頻率上超越了強大的競爭對手Intel。 o AMD 5X86(1995年)微處理器,核心代號X5,AMD公司在486市場的利器。486時代的後期,TI(德州儀器)推出了高性價比的TI486DX2-80,很快佔領了中低端市場,Intel也推出了高端的Pentium系列。AMD為了搶占市場的空缺,便推出了5x86系列CPU(幾乎是與Cyrix 5x86同時推出)。它是486級最高頻的產品----33*4、133MHz,0.35微米製造工藝,內置16KB一級回寫緩存,性能直指Pentium75,並且功耗要小於Pentium。 o AMD K5(1997年)微處理器,1997年發布。因為研發問題,其上市時間比競爭對手Intel的"經典奔騰"晚了許多,再加上性能並不十分出色,這個不成功的產品一度使得AMD的市場份額大量喪失。K5的性能非常一般,整數運算能力比不上Cyrix x86,但比"經典奔騰"略強;浮點預算能力遠遠比不上"經典奔騰",但稍強於Cyrix 6x86。綜合來看,K5屬於實力比較平均的產品,而上市之初的低廉的價格比其性能更加吸引消費者。另外,最高端的K5-RP200產量很小(慣例吧:)並且沒有在中國大陸銷售。 o AMD K6(1997年)處理器是與Intel PentiumMMX同檔次的產品。是AMD在收購了NexGen,融入當時先進的NexGen 686技術之後的力作。它同樣包含了MMX指令集以及比Pentium MMX整整大出一倍的64KB的L1緩存!整體比較而言,K6是一款成功的作品,只是在性能方面,浮點運算能力依舊低於Pentium MMX。 o K6-2(1998年)系列微處理器曾經是AMD的拳頭產品,現在我們稱之為經典。為了打敗競爭對手Intel,AMD K6-2系列微處理器在K6的基礎上做了大幅度的改進,其中最主要的是加入了對"3DNow!"指令的支持。"3DNow!"指令是對X86體系的重大突破,此項技術帶給我們的好處是大大加強了計算機的3D處理能力,帶給我們真正優秀的3D表現。當你使用專門"3DNow!"優化的軟體時就能發現,K6-2的潛力是多麼的巨大。而且大多數K6-2並沒有鎖頻,加上0.25微米製造工藝帶給我們的低發熱量,能很輕松的超頻使用。也就是從K6-2開始,超頻不再是Intel的專有名詞。同時,.K62也繼承了AMD一貫的傳統,同頻型號比Intel產品價格要低25%左右,市場銷量驚人。K6-2系列上市之初使用的是"K6 3D"這個名字("3D"即"3DNow!"),待到正式上市才正名為"K6-2"。正因為如此,大多數K6 3D為ES(少量正式版,畢竟沒有量產:)。K6 3D曾經有一款非標準的250MHz產品,但是在正式的K6-2系列中並沒有出現。K6-2的最低頻率為200MHz,最高達到550MHz。 o AMD於1999年2月推出了代號為"Sharptooth"(利齒)的K6-3(1998年)系列微處理器,它是AMD推出的最後一款支持Super架構和CPGA封裝形式的CPU。K6-3採用了0.25微米製造工藝,集成256KB二級緩存(競爭對手Intel的新賽揚是128KB),並以CPU的主頻速度運行。而曾經Socket 7主板上的L2此時就被K6-3自動識別為了L3,這對於高頻率的CPU來說無疑很有優勢,雖然K6-3的浮點運算依舊差強人意。因為各種原因,K6-3投放市場之後難覓蹤跡,價格也並非平易近人,即便是更加先進的K6-3+出現之後。 oAMD於2001年10月推出了K8架構。盡管K8和K7採用了一樣數目的浮點調度程序窗口(scheling window ),但是整數單元從K7的18個擴充到了24個,此外,AMD將K7中的分支預測單元做了改進。global history counter buffer(用於記錄CPU在某段時間內對數據的訪問,稱之為全歷史計數緩沖器)比起Athlon來足足大了4倍,並在分支測錯前流水線中可以容納更多指令數,AMD在整數調度程序上的改進讓K8的管線深度比Athlon多出2級。增加兩級線管深度的目的在於提升K8的核心頻率。在K8中,AMD增加了後備式轉換緩沖,這是為了應對Opteron在伺服器應用中的超大內存需求。 oAMD於2007下半年推出K10架構。 採用K10架構的 Barcelona為四核並有4.63億晶體管。Barcelona是AMD第一款四核處理器,原生架構基於65nm工藝技術。和Intel Kentsfield四核不同的是,Barcelona並不是將兩個雙核封裝在一起,而是真正的單晶元四核心。 ● Barcelona新特性解析:引入全新SSE128技術 Barcelona中的一項重要改進是被AMD稱為「SSE128」的技術,在K8架構中,處理器可以並行處理兩個SSE指令,但是SSE執行單元一般只有64位帶寬。對於128位的SSE操作,K8處理器需要將其作為兩個64位指令對待。也就是說,當一個128位 SSE指令被取出後,首先需要將其解碼為兩個micro-ops,因此一個單指令還佔用了額外的解碼埠,降低了執行效率。 而Barcelona加寬了執行單元從64位到128位,所有128位的SSE操作不再需要進行解碼分解為兩個64位操作,並且浮點調度器也可以支持這種128位 SSE操作,提高了執行效率。 提高SSE指令執行單元帶寬的同時,也會帶來一些新的變化,也可以說是新的瓶頸:指令存取帶寬。為了將並行處理器過程中解碼數量最大化,Barcelona開始支持32位元組每時鍾周期的指令存取,而先前K8架構只支持16位元組。32位元組的指令存取帶寬不僅對處理器SSE代碼有幫助,同時對於整數指令也有效果。 ● Barcelona新特性解析:內存控制器再度強化 當年當AMD將內存控制器集成至CPU內部時,我們看到了嶄新而強大的K8構架。如今,Barcelona的內存控制器在設計上將又一次極大的改進其內存性能。 Intel Xeon伺服器所有使用的FB-DIMM內存一大優勢是,可以同時執行讀和寫命令到AMB,而在標準的DDR2內存中,你只能同時進行一個操作,而且讀和寫的切換會有非常大的損失。如果是一連串的隨機混合執行的話,將會帶來非常嚴重的資源浪費,而如果是先全部讀然後再轉換到寫的話,就可以避免性能的損失。K8內存控制器就採用讀取優先於寫的策略來提高運行效率,但是Barcelona則更加智能化。 但是讀取的數據會被先存放在buffer中,而不採用先直接執行寫,但當它的容量達到了極限就會溢出,為了避免這種情況,在此之前才對讀寫之間進行切換,同時可以帶來帶寬和延遲方面效率的提高。K8核心配備的是128-bits寬度的單內存控制器,但是在Barcelona中,AMD把它分割成兩個64-bit,每個控制器可以獨立的進行操作,因此它可以帶來效率上的不小提升,尤其是在四核執行的環境下,每個核心可以獨立佔有內存訪問資源。 Barcelonas中集成的北橋部分(注意不是主板北橋)也被設計成更高的帶寬,更深的buffers將允許更高的帶寬利用率,同時北橋自身已經可以使用未來的內存技術,比如DDR3。 內存控制器的預取功能是運用相當廣泛、十分重要的一項功能。預取可以減少內存延遲對整體性能的負面影響。當NVIDIA發布nForce2主板時,重點介紹的就是nForce2晶元組的128位智能預取功能。Intel在發布Core 2處理器之時也強調了CORE構架每核心擁有三個預取單元。 K8構架中每個核心設計有2個預取器,一個是指令預取器,另一個是數據預取器。K8L構架的Barcelona保持了2個的數量,但在性能上有了較大的改進。一個明顯的改進是數據預取器直接將數據寄存入L1緩存中,相比K8構架中寄存入L2緩存的做法,新的數據預取器准確率更高,速度更快,內存性能及CPU整體性能將得益於此。 ● Barcelona新特性解析:創新——三級緩存 受工藝技術方面的影響,AMD處理器的緩存容量一直都要落後於Intel,AMD自己也清楚自己無法在寶貴的die上加入更多的晶體管來實現大容量的緩存,但是勇於創新的AMD卻找到了更好的辦法——集成內存控制器。 處理器整合內存控制器可以說是一項傑作,擁有整合內存控制器的K8構架僅依靠512KB的L2緩存就能夠擊敗當時的對手Pentium 4。直到現在的Athlon 64 X2也依然保持著Intel 2002年就已過時的512KB L2緩存。 現在Core 2已經擁有了4MB的L2緩存,看來Intel和AMD之間的緩存差距還將保持,因為Barcelona的L2緩存依然是512KB。相比之下,Intel四核的Kentsfield晶元擁有8MB的L2緩存,而2007年末上市的新型Penryn晶元將擁有12MB的L2緩存。 Barcelona的緩存體系和K8構架有一定的相似之處,它的四顆核心各擁有64KB的L1緩存和512KB的L2緩存。從簡化晶元設計的角度來看,四核心共享巨大的L2緩存對K8L構架而言並不合適,所以AMD引入了L3緩存,得益於65nm工藝,Barcelona在一顆晶圓上集成四顆核心外,還集成了一塊2MB容量的L3緩存。也就是說L3緩存與4顆內核同樣原生於一塊晶圓,其容量為最小2M起跳。同L2緩存一樣,L3緩存也是獨立的,L1緩存的數據和L3緩存的數據將不會重復。 Barcelona的緩存工作原理是:L2緩存是作為L1緩存的備用空間。L1緩存儲存著CPU當前最需要的數據,而當空間不足時,一些不是最重要的數據就轉移到L2緩存中。而當未來再次需要時,則從L2緩存中再次轉移到L1緩存中。新加入的L3緩存延續了L2緩存的角色,四顆核心的L2緩存將溢出的數據暫時寄存在L3緩存中。 L1緩存和L2緩存依然分別是2路和16路,L3緩存則是32路。快速的32路L3緩存不僅可以更好的滿足多任務並行,而且對單任務的執行也有著較大積極作用。尤其在3D運用方面,2MB的L3緩存將對性能產生極大的推進作用。 AMD全新45nm的Shanghai架構 2008年11月13日,AMD公司宣布其代號為「上海」的新一代45nm四核皓龍處理器已經廣泛上市。「上海」性能最高提升達35%,而空載時的功耗可顯著降低35%。新一代四核AMD皓龍處理器採用創新的設計,能夠帶來更高的虛擬化性能和每瓦性價比,幫助數據中心提高效率,降低復雜性,從而最大限度地滿足IT管理者的需要,以更低的投入實現更高的產出。 AMD公司負責計算解決方案業務的高級副總裁Randy Allen表示:「新一代四核AMD皓龍處理器是在正確的時間誕生的一款正確的產品。堪稱完美的提前推出,使之成為x86伺服器性能的新王者。通過與OEM廠商和解決方案供應商等合作夥伴的緊密合作,AMD的創新技術在滿足企業用戶目前最基本需求的同時,還為其未來發展做好准備。自4年前AMD推出世界首款x86雙核處理器以來,這一增強的新一代皓龍處理器帶來了AMD產品性能和每瓦性價比的最大提升。」 領先的性能滿足當今最迫切的商務需求 數據中心的管理者們面對日益增長的壓力,諸如網路服務、資料庫應用等的企業工作負載對計算的需求越來越高;而在當前的IT支出環境下,還要以更低的投入實現更高的產出。迅速增長的新計算技術如雲計算和虛擬化等,在今年第二季度實現了60%的同比增長率3,這些技術在迅速應用的同時也迫切需要一個均衡的系統解決方案。最新的四核AMD皓龍處理器進一步增強了AMD獨有的直連架構優勢,能夠為包括雲計算和虛擬化在內的日漸擴大的異構計算環境提供具有出色穩定性和擴展性的解決方案。 卓越的虛擬化性能 具有改進的AMD直連架構和AMD虛擬化技術(AMD-V(TM)),45nm四核皓龍處理器成為已有的基於AMD技術的虛擬化平台的不二選擇,目前全球的OEM廠商已基於上一代AMD四核皓龍處理器推出了9款專門為虛擬化應用而設計的伺服器。新一代處理器可提供更快的虛擬機轉換時間,並優化快速虛擬化索引技術(RVI)的特性,從而提高虛擬機的效率,AMD的AMD-V(TM)還可以減少軟體虛擬化的開銷。 無與倫比的性價比 與歷代的AMD皓龍處理器相比,新一代四核皓龍處理器帶來了前所未有的性能和每瓦性能比顯著增強,包括: o 以與上代四核皓龍處理器相同的功耗設計,大幅提高CPU時鍾頻率。這得益於處理器設計增強、AMD業界領先的45nm沉浸式光刻技術和超強的處理器設計與驗證能力。 o L3緩存容量提高200%,達到6MB,增強虛擬化、資料庫和Java等內存密集型應用的性能。 o 支持DDR2-800內存,與現有AMD皓龍處理器相比內存帶寬實現了大幅提高,並且比競品使用的Fully-Buffered DIMM具有更高的能效。 o 即將推出的超傳輸匯流排(TM)3.0 (HyperTransport(TM) 3.0)技術將進一步增強AMD革命性的直連架構,計劃於2009年2季度將處理器之間的通信帶寬提高到17.6GB/s。 無可匹敵的節能特性 AMD皓龍處理器業已帶來了業界領先的X86伺服器處理器每瓦性價比,與之相比,新一代45nm四核AMD皓龍處理器在空載狀態的能耗可以大幅降低35%,而性能可提高達35%。「上海」採用了眾多的新型節能技術:AMD智能預取技術,可允許處理器核心在空載時進入「暫停」狀態,而不會對應用性能和緩存中的數據有任何影響,從而顯著降低能耗;AMD CoolCore(TM) 技術能夠關閉處理器中非工作區域以進一步節省能耗。 在平台配置相似的情況下,基於75瓦AMD 四核皓龍處理器的平台,與基於50瓦處理器的競爭平台相比,具有高達30%的每瓦性能比優勢。相似平台配置下,基於AMD 四核皓龍處理器2380的平台,空載狀態的功耗為138瓦;與之對比,基於英特爾四核處理器的平台在相同狀態下的功耗則為179瓦。基於AMD 四核皓龍2380型號處理器的平台,在SPECpower_ssj(TM)2008基準測試中取得761ssj_ops/每瓦的總成績 (308,089 ssj_ops @ 100% 的目標負載),而英特爾四核平台為總成績為561ssj_ops/每瓦 (267,804 ssj_ops @ 100%的目標負載). 4 前所未有的平台穩定性 作為唯一用相同的架構提供2路到8路伺服器處理器的x86微處理器製造商,AMD新一代45nm四核皓龍處理器在插槽和散熱設計與上代四核和雙核AMD皓龍處理器兼容,延續了AMD的領先地位。這可以幫助消費者減少平台管理的復雜性和費用,增強數據中心的正常運行時間和生產力。新的45nm處理器適用於現有的Socket 1207插槽架構,未來代號為「Istanbul」的AMD 下一代皓龍處理器也計劃使用相同插槽。 全球OEM 廠商支持 作為業內最易於管理和一致的x86伺服器平台,由於採用AMD皓龍處理器,至少是部分原因,全球OEM和系統開發商能夠迅速完成驗證流程,並預計從本月起開始交付基於增強的四核AMD皓龍處理器的下一代系統。本季度和2009年第一季度,基於增強的四核AMD皓龍處理器的系統的供應量有望迅速增長。 惠普工業標准伺服器業務部營銷副總裁Paul Gottsegen 表示:「通過採用基於新 『上海』處理器的 HP ProLiant伺服器,客戶可以降低成本,同時使能效和性能更上層樓。在與AMD公司過去的4年合作中,我們為各種規模的客戶提供了基於AMD皓龍處理器的平台,並取得了空前的成功。初期反饋結果表明『上海』將成為贏者。」 Sun公司系統業務部執行副總裁John Fowler 表示:「 Sun的創新系統設計和Solaris與增強型四核AMD皓龍處理器相結合,將為虛擬化應用和系統整合帶來具有難以置信的強大性能、可擴展性和高能效特性的x64平台。在數據中心增長過程中,基於AMD增強型四核皓龍處理器的Sun伺服器能夠處理最復雜的數據群並靈活擴展。而由於歷代平台之間的連續性,客戶有信心確保新系統與已部署的AMD皓龍系統實現無縫兼容。」 戴爾商用產品部高級副總裁Brad Anderson表示:「戴爾和AMD公司共同致力於為企業提供強大的全系列產品,以簡化IT環境管理並降低管理成本。我們的PowerEdge伺服器專門設計以充分利用AMD晶元中集成的虛擬化特性。這種緊密協作效果顯著,2路和4路機架和刀片式PowerEdge伺服器已經取得了破紀錄的虛擬化性能。」 IBM刀片式伺服器副總裁Alex Yost表示:「自2003年以來,IBM就利用AMD皓龍處理器的性能和直連架構滿足企業用戶計算密集型的需求,並為其帶來更多選擇。IBM正在AMD新處理器高能效和虛擬化的基礎上進一步創新,為我們的客戶帶來更高的價值。」 o 採用直連架構的 AMD 皓龍(Opteron)(TM) 處理器可以提供領先的多技術。 使IT管理員能夠在同一伺服器上運行32位與64位應用軟體,前提是該伺服器使用的是64位操作系統。 o AMD 速龍(Athlon64),又叫阿斯龍(TM) 64 處理器可以為企業的台式電腦用戶提供卓越的性能和重要的投資保護,具有出色的功能和性能,可以提供栩栩如生的數字媒體效果――包括音樂、視頻、照片和 DVD 等。 o AMD 雙核速龍(TM) 64(AthlonX2 64 )處理器可以提供更AMD雙核速龍64處理器架構高的多任務性能,幫助企業在更短的時間內完成更多的任務(包括業務應用和視頻、照片編輯,內容創建和音頻製作等)。這些強大的功能使其成為那些即將上市的新型媒體中心的最佳選擇。 o AMD 炫龍(TM) 64(Turion64) 移動計算技術可以利用移動計算領域的最新成果,提供最高的移動辦公能力,以及領先的 64 位計算技術。 o AMD 閃龍(TM)(Sempron64) 處理器不僅可以為企業提供出色的性價比,而且可以提高員工的日常工作效率。 o AMD 羿龍(TM)(phenom)處理器 全新架構的4核處理器,進一步滿足用戶需求(在命名中取消「64」,因為現今的CPU都是64位的,不必再標明)。為滿足消費者的不同需求,AMD近期也推出了3核羿龍產品! 對於消費者, AMD 也提供全系列 64 位產品。 o AMD 雷鳥(TM) (Thunderbird)處理器 o AMD 鑽龍(TM) (Duron)處理器可以說是雷鳥的精簡便宜版,架構和雷鳥處理器一樣,其差別除了時脈較低之外,就是內建的L2 Cache,只有64K 。
嵌入式解決方案
AMD 的嵌入式解決方案以個人電腦以外的上網設備為目標市場,鎖定的目標產品包括平板電腦、汽車導航及娛樂系統、家庭與小型辦公室網路產品以及通信設備。AMD Geode(TM) 解決方案系列不僅包括基於x86的嵌入式處理器,還包括多種系統解決方案。AMD 的一系列 Alchemy(TM) 解決方案有低功率、高性能的 MIPS(TM) 處理器、無線技術、開發電路板及參考設計套件。隨著這些新的解決方案相繼推出,AMD 的產品將會更加多元化,有助確立 AMD 在新一代產品市場上的領導地位。
精確生產技術
為了在當今競爭異常激烈的市場中獲得成功,跨國電子公司需要值得信賴的供應商和合作夥伴來為他們按時按量地提供他們所需要的解決方案。因此, AMD 採用了一種高效的、基於合作夥伴的研發模式,確保它的產品和解決方案可以始終在性能和功率方面保持領先。藉助於行業夥伴的技術和資源, AMD 為它的產品集成了先進的亞微米技術。它的產品通常領先於行業總體水平,而且成本遠低於平均成本。 為了在批量生產過程中無縫地採用這些先進的技術, AMD 開發和採用了數百種旨在自動確定最復雜的製造決策的專利技術。這些業界獨一無二的功能現在被統稱為自動化精確生產( APM )。它們為 AMD 提供了前所未有的生產速度、准確性和靈活性。

⑧ AMD前身是什麼,中文叫什麼

AMD前身是INTEL的一個代工工廠,中文名字叫超微。

⑨ 列舉AMD、Intel不同階段的產品

AMD發展歷史

自成立以來,AMD就不斷地開發新產品,並逐漸形成了一套與眾不同的企業文化,而眾多員工也在事業上取得了很大的成就。下面將簡單介紹AMD近三十年來的發展歷程,從中我們可以預見公司的燦爛前景。
AMD的歷史悠久,業績顯赫。這個傳統已經成為一股凝聚力,將AMD的全球員工緊密地團結在一起。AMD創辦於1969年,當時公司的規模很小,甚至總部就設在一位創始人的家中。但是從那時起到現在,AMD一直在不斷地發展,目前已經成為一家年收入高達24億美元的跨國公司。下面將介紹決定AMD發展方向的重要事件、推動AMD向前發展的主要力量,並按時間順序回顧AMD各年大事。

1969-74 - 尋找機會

對Jerry Sanders來說,1969年5月1日是一個非常重要的日子。在此之前的幾個月里,他與其它七個合作夥伴一直為創建一家新公司而埋頭苦幹。Jerry已經在上一年辭去了Fairchild Semiconctor公司全球行銷總監的職務。此刻,他正帶領一個團隊努力工作,這個團隊的目標非常明確--通過為生產計算機、通信設備和儀表等電子產品的廠商提供日益精密的構成模塊,創建一家成功的半導體公司。

雖然在公司剛成立時,所有員工只能在創始人之一的JohnCarey的起居室中辦公,但不久他們便遷往美國加州聖克拉拉,租用一家地毯店鋪後面的兩個房間作為辦公地點。到當年9月份,AMD已經籌得所需的資金,可以開始生產,並遷往加州森尼韋爾的901 Thompson Place,這是AMD的第一個永久性辦公地點。

在創辦初期,AMD的主要業務是為其它公司重新設計產品,提高它們的速度和效率,並以"第二供應商"的方式向市場提供這些產品。AMD當時的口號是"更卓越的參數表現"。為了加強產品的銷售優勢,該公司提供了業內前所未有的品質保證--所有產品均按照嚴格的MIL-STD-883標准進行生產及測試,有關保證適用於所有客戶,並且不會加收任何費用。

在AMD創立五周年時,AMD已經擁有1500名員工,生產200多種不同的產品--其中很多都是AMD自行開發的,年銷售額將近2650萬美元。

歷史回顧

1969年5月1日--AMD公司以10萬美元的啟動資金正式成立。

1969年9月--AMD公司遷往位於901 Thompson Place,Sunnyvale 的新總部。

1969年11月--Fab 1產出第一個優良晶元--Am9300,這是一款4位MSI移位寄存器。

1970年5月--AMD成立一周年。這時AMD已經擁有53名員工和18種產品,但是還沒有銷售額。

1970--推出一個自行開發的產品--Am2501。

1972年11月--開始在新落成的902 Thompson Place 廠房中生產晶圓。

1972年9月--AMD上市,以每股15美元的價格發行了52.5萬股。

1973年1月--AMD在馬來西亞檳榔嶼設立了第一個海外生產基地,以進行大批量生產。

1973--進行利潤分紅。

1974--AMD以2650萬美元的銷售額結束第五個財年。

1974-79 - 定義未來

AMD在第二個五年的發展讓全世界體會到了它最持久的優點--堅忍不拔。盡管美國經濟在1974到75年之間經歷了一場嚴重的衰退,AMD公司的銷售額也受到了一定的影響,但是仍然在此期間增長到了1.68億美元,這意味著平均年綜合增長率超過60%。

在AMD成立五周年之際,AMD舉辦了一項後來發展成為公司著名傳統的活動--它舉辦了一場盛大的慶祝會,即一個由員工及其親屬參加的游園會。

這也是AMD大幅度擴建生產設施的階段,這包括在森尼韋爾建造915 DeGuigne,在菲律賓馬尼拉設立一個組裝生產基地,以及擴建在馬來西亞檳榔嶼的廠房。

1974年5月--為了慶祝公司創建五周年,AMD舉辦了一次員工游園會,向員工贈送了一台電視、多輛10速自行車和豐盛的燒烤野餐。

1974--位於森尼韋爾的915 DeGuigne建成。

1974-75--經濟衰退迫使AMD規定專業人員每周工作44小時。

1975--AMD通過AM9102進入RAM市場。

1975--Jerry Sanders提出:"以人為本,產品和利潤將會隨之而來。"

1975--AMD的產品線加入8080A標准處理器和AM2900系列。

1976--AMD在位於帕洛阿爾托的Rickey's Hyatt House 舉辦了第一次盛大的聖誕節聚會。

1976--AMD和Intel簽署專利相互授權協議。

1977--西門子和AMD創建Advanced Micro Computers (AMC) 公司。

1978--AMD在馬尼拉設立一個組裝生產基地。

1978--AMD的銷售額達到了一個重要的里程碑:年度總營業額達到1億美元。

1978--奧斯丁生產基地開始動工。

1979--奧斯丁生產基地投入使用。

1979--AMD在紐約股票交易所上市。

1980 - 1983 - 尋求卓越

在20世紀80年代早期,兩個著名的標志代表了AMD的處境。第一個是所謂的"蘆筍時代",它代表了該公司力求增加它向市場提供的專利產品數量的決心。與這種高利潤的農作物一樣,專利產品的開發需要相當長的時間,但是最終會給前期投資帶來滿意的回報。第二個標志是一個巨大的海浪。AMD將它作為"追趕潮流"招募活動的核心標志,並用這股浪潮表示集成電路領域的一種不可阻擋的力量。

我們的確是不可阻擋的。AMD的研發投資一直領先於業內其他廠商。在1981財年結束時,該公司的銷售額比1979財年增長了一倍以上。在此期間,AMD擴建了它的廠房和生產基地,並著重在得克薩斯州建造新的生產設施。AMD在聖安東尼奧建起了新的生產基地,並擴建了奧斯丁的廠房。AMD迅速地成為了全球半導體市場中的一個重要競爭者。

歷史回顧

1980--Josie Lleno在AMD在聖何塞會議中心舉辦的"五月聖誕節"聚會中贏得了連續20年、每月1000美元的獎勵。

1981--AMD的晶元被用於建造哥倫比亞號太空梭。

1981--聖安東尼奧生產基地建成。

1981--AMD和Intel決定延續並擴大他們原先的專利相互授權協議。

1982--奧斯丁的第一條只需4名員工的生產線(MMP)開始投入使用。

1982--AMD和Intel簽署圍繞iAPX86微處理器和周邊設備的技術交換協議。

1983--AMD推出當時業內最高的質量標准INT.STD.1000。

1983--AMD新加坡分公司成立。

1984-1989 --經受嚴峻考驗

AMD以公司有史以來最佳的年度銷售業績迎來了它的第十五周年。在AMD慶祝完周年紀念之後的幾個月里,員工們收到了創紀錄的利潤分紅支票,並與來自洛杉磯的Chicago樂隊和來自得克薩斯州的Joe King Carrasco 、Crowns等樂隊一同歡慶聖誕節。

但是在1986年,變革大潮開始席捲整個行業。日本半導體廠商逐漸在內存市場中占據了主導地位,而這個市場一直是AMD業務的主要支柱。同時,一場嚴重的經濟衰退沖擊了整個計算機市場,限制了人們對於各種晶元的需求。AMD和半導體行業的其他公司都致力於在日益艱難的市場環境中尋找新的競爭手段。

到了1989,Jerry Sanders開始考慮改革:改組整個公司,以求在新的市場中贏得競爭優勢。AMD開始通過設立亞微米研發中心,加強自己的亞微米製造能力。

歷史回顧

1984--曼谷生產基地開始動工。

1984--奧斯丁的第二個廠房開始動工。

1984--AMD被列入《美國100家最適宜工作的公司》一書。

1985--AMD首次進入財富500強。

1985--位於奧斯丁的Fabs 14 和15投入使用。

1985--AMD啟動自由晶元計劃。

1986--AMD推出29300系列32位晶元。

1986--AMD推出業界第一款1M比特的EPROM。

1986年9月--Tony Holbrook被任命為公司總裁。

1986年10月--由於長時間的經濟衰退,AMD宣布了10多年來的首次裁員計劃。

1987--AMD與Sony公司共同設立了一家CMOS技術公司。

1987年4月--AMD向Intel公司提起法律訴訟。

1987年4月--AMD和 Monolithic Memories公司達成並購協議。

1989年9月4日- 展開變革

1988年10月--SDC開始動工。

AMD在這段時期的發展主要是通過提供越來越具競爭力的產品,不斷地開發出對於大批量生產至關重要的製造和處理技術,以及加強與戰略性合作夥伴的合作關系而實現的。在這段時期,與基礎設施、軟體、技術和OEM合作夥伴的合作關系非常重要,它使得AMD能夠帶領整個行業向創新的平台和產品發展,在市場中再次引入競爭。

1995年,AMD和NexGen兩家公司的高層主管首次會面,探討了一個共同的夢想:創建一種能夠在市場中再次引入競爭的微處理器系列。這些會談促使AMD在1996年收購了NexGen公司,並成功地推出了AMD-K6 處理器。AMD-K6處理器不僅實現了這些起點很高的目標, 而且可以充當一座橋梁,幫助AMD推出它的下一代AMD 速龍 處理器系列。這標志著該公司的真正成功。

AMD速龍 處理器在1999年的成功推出標志著AMD終於實現了自己的目標:設計和生產一款業界領先、自行開發、兼容Microsoft Windows的處理器。AMD首次推出了一款能夠採用針對AMD處理器進行了專門優化的晶元組和主板、業界領先的處理器。AMD速龍 處理器將繼續為該公司和整個行業創造很多新的記錄,其中包括第一款達到歷史性的1GHz(1000MHz)主頻的處理器,這使得它成為了行業發展歷史上最著名的處理器產品之一。AMD速龍 處理器和基於AMD速龍 處理器的系統已經獲得了全球很多獨立刊物和組織頒發的100多項著名大獎。

在推出這款創新的產品系列的同時,該公司還具備了足夠的生產能力,可以滿足市場對於其產品的不斷增長的需求。1995年,位於得克薩斯州奧斯丁的Fab 25順利建成。在Fab 25建成之前,AMD已經為在德國德累斯頓建設它的下一個大型生產基地做好了充分的准備。與Motorola的戰略性合作讓AMD可以開發出基於銅互連、面向未來的處理器技術,從而讓AMD成為了第一個能夠利用銅互連技術開發兼容Microsoft Windows的處理器的公司。這種共同開發的處理技術將能夠幫助AMD在Fab 30穩定地生產大批的AMD速龍 處理器。
為了尋找新的競爭手段,AMD提出了"影響范圍"的概念。對於改革AMD而言,這些范圍指的是兼容IBM計算機的微處理器、網路和通信晶元、可編程邏輯設備和高性能內存。此外,該公司的持久生命力還來自於它在亞微米處理技術開發方面取得的成功。這種技術將可以滿足該公司在下一個世紀的生產需求。

在AMD創立25周年時,AMD已經動用了它所擁有的所有優勢來實現這些目標。目前,AMD在它所參與的所有市場中都名列第一或者第二,其中包括Microsoft Windows? 兼容市場。該公司在這方面已經成功地克服了法律障礙,可以生產自行開發的、被廣泛採用的Am386 和 Am486 微處理器。AMD已經成為快閃記憶體、EPROM、網路、電信和可編程邏輯晶元的重要供應商,而且正在致力於建立另外一個專門生產亞微米設備的大批量生產基地。在過去三年中,該公司獲得了創紀錄的銷售額和運營收入。

盡管AMD的形象與25年前相比已經有了很大的不同,但是它仍然像過去一樣,是一個頑強、堅決的競爭對手,並可以通過它的員工的不懈努力,戰勝任何挑戰。

通過提供針對雙運行快閃記憶體設備的行業標准,AMD繼續保持著它在快閃記憶體技術領域的領先地位。快閃記憶體已經成為推動當時的技術繁榮的眾多技術的重要組件。手提電話和互聯網加大了市場對於快閃記憶體的需求,而且它的應用正在變得日益普遍。AMD范圍廣泛的快閃記憶體設備產品線當時已經能夠滿足手提電話、汽車導航系統、互聯網設備、有線電視機頂盒、有線電纜數據機和很多其他應用的內存要求。

通過多種可以為客戶提供顯著競爭優勢的快閃記憶體和微處理器產品,能穩定生產大量產品、業界領先的全球性生產基地,以及面向未來、富有競爭力的產品和製造計劃,AMD得以在成功地渡過一個繁榮時期之後,順利地進入新世紀。

2006年7月24日AMD正式宣布54億美元並購ATI,新公司將以AMD的名義運作。

AMD2006年10月25日宣布完成對加拿大ATI公司價值約54億美元的並購案,ATI也從即日起啟用全新設計的官方網站,訪問者在登錄原有的www.ati.com時將會自動轉跳至ati.amd.com。

根據雙方交易條款,AMD以42億美元現金和5700萬股AMD普通股收購截止2006年7月21日發行的ATI公司全部的普通股,通過此次並購, AMD在處理器領域的領先技術將與ATI公司在圖形處理、晶元組和消費電子領域的優勢完美結合,AMD將於2007年推出以客戶為導向的技術平台,滿足客戶開發差異化解決方案的需求。

AMD同時將繼續開發業界最好的處理器產品,讓客戶可以根據自身需求選擇最佳的技術組合;從2008年起,AMD將超越現有的技術布局,改造處理器技術,推出整合處理器和繪圖處理器的晶元平台。

-----------------------------------------------------------------------------------------------------------------------------
微處理器的里程碑

1971年:4004微處理器
4004處理器是英特爾的第一款微處理器。這一突破性的重大發明不僅成為Busicom計算器強勁的動力之源,更打開了讓機器設備象個人電腦一樣可嵌入智能的未來之路。

1972年:8008微處理器
8008處理器擁有相當於4004處理器兩倍的處理能力。《無線電電子學》 雜志1974年的一篇文章曾提及一種採用了8008處理器的設備 Mark-8,它是首批為家用目的而製造的電腦之一——不過按照今天的標准,Mark-8既難於製造組裝,又不容易維護操作。

1974年:8080微處理器
世界上第一台個人電腦 Altair 採用了8080處理器作為大腦——據稱 「Altair」 出自電視劇 《星際迷航 Star Trek》,是片中企業號飛船的目標地之一。電腦愛好者們花395美元就能購買一台 Altair。僅短短幾個月時間,這種電腦就銷售出了好幾萬台,創下歷史上首次個人電腦延期交貨的紀錄

1978年:8086-8088微處理器
英特爾與IBM 新個人電腦部門所進行的一次關鍵交易使8088處理器成為了IBM 新型主打產品IBM PC的大腦。8088的大獲成功使英特爾步入全球企業500強的行列,並被 《財富》 雜志評為「70 年代最成功企業」之一。

1982年:286微處理器
英特爾286最初的名稱為80286,是英特爾第一款能夠運行所有為其前代產品編寫的軟體的處理器。這種強大的軟體兼容性亦成為英特爾微處理器家族的重要特點之一。在該產品發布後的6年裡,全世界共生產了大約1500萬台採用286處理器的個人電腦。

1985年:英特386™ 微處理器
英特爾386™ 微處理器擁有275,000個晶體管,是早期4004處理器的100多倍。該處理器是一款32位晶元,具有多任務處理能力,也就是說它可以同時運行多種程序。

1989年:英特爾486™ DX CPU 微處理器
英特爾486™ 處理器從真正意義上表明用戶從依靠輸入命令運行電腦的年代進入了只需點擊即可操作的全新時代。史密森尼博物院國立美國歷史博物館的技術史學家David K. Allison回憶說,「我第一次擁有這樣一台彩色顯示電腦,並如此之快地在桌面進行我的排版工作。」英特爾486™ 處理器首次增加了一個內置的數學協處理器,將復雜的數學功能從中央處理器中分離出來,從而大幅度提高了計算速度。

1993年:英特爾奔騰(Pentium)處理器
英特爾奔騰處理器能夠讓電腦更加輕松地整合 「真實世界」 中的數據(如講話、聲音、筆跡和圖片)。通過漫畫和電視脫口秀節目宣傳的英特爾奔騰處理器,一經推出即迅速成為一個家喻戶曉的知名品牌。

1995年:英特爾高能奔騰(Italium Pentium) 處理器
於1995 年秋季發布的英特爾高能奔騰處理器設計用於支持32位伺服器和工作站應用,以及高速的電腦輔助設計、機械工程和科學計算等。每一枚英特爾高能奔騰處理器在封裝時都加入了一枚可以再次提升速度的二級高速緩存存儲晶元。強大的英特爾高能奔騰處理器擁有多達550萬個晶體管。不適應市場需要,過早夭折。

1997年:英特爾奔騰II(Pentium II)處理器
英特爾奔騰II 處理器擁有750萬個晶體管,並採用了英特爾MMX™ 技術,專門設計用於高效處理視頻、音頻和圖形數據。該產品採用了創新的單邊接觸卡盒(S.E.C)封裝,並整合了一枚高速緩存存儲晶元。有了這一晶元,個人電腦用戶就可以通過互聯網捕捉、編輯並與朋友和家人共享數字圖片;還可以對家庭電影進行編輯和添加文本、音樂或情景過渡;甚至可以使用視頻電話通過標準的電話線向互聯網發送視頻。

1998年:英特爾奔騰II至強(Xeon)處理器
英特爾奔騰II至強處理器設計用於滿足中高端伺服器和工作站的性能要求。遵照英特爾為特定市場提供專屬處理器產品的戰略,英特爾奔騰II至強處理器所擁有的技術創新專門設計用於工作站和伺服器執行所需的商業應用,如互聯網服務、企業數據存儲、數字內容創作以及電子和機械設計自動化等。基於該處理器的計算機系統可配置四或八枚處理器甚至更多。

1999年:英特爾賽揚(Celeron)處理器
作為英特爾面向具體市場開發產品這一戰略的繼續,英特爾賽揚處理器設計用於經濟型的個人電腦市場。該處理器為消費者提供了格外出色的性價比,並為游戲和教育軟體等應用提供了出色的性能。

1999年:英特爾奔騰III(Pentium III)處理器
英特爾奔騰III處理器的70條創新指令——網際網路數據流單指令序列擴展(Internet Streaming SIMD extensions)——明顯增強了處理高級圖像、3D、音頻流、視頻和語音識別等應用所需的性能。該產品設計用於大幅提升互聯網體驗,讓用戶得以瀏覽逼真的網上博物館和商店,並下載高品質的視頻等。該處理器集成了950萬個晶體管,並採用了0.25微米技術。

1999年:英特爾奔騰III至強(Pentium III Xeon)處理器
英特爾奔騰III至強處理器在英特爾面向工作站和伺服器市場的產品基礎上進行了擴展,提供額外的性能以支持電子商務應用及高端商業計算。該處理器整合了英特爾奔騰III 處理器所擁有的70條 SIMD 指令,使得多媒體和視頻流應用的性能顯著增強。並且英特爾奔騰III至強處理器所擁有的先進的高速緩存技術加速了信息從系統匯流排到處理器的傳輸,使性能獲得了大幅提升。該處理器設計用於多處理器配置的系統。

2000年:英特爾奔騰4(Pentium 4)處理器
基於英特爾奔騰4處理器的個人電腦用戶可以創作專業品質的電影;通過互聯網發送像電視一樣的視頻;使用實時視頻語音工具進行交流;實時渲染3D圖形;為 MP3 播放器快速編碼音樂;在與互聯網進行連接的狀態下同時運行多個多媒體應用。該處理器最初推出時就擁有4200萬個晶體管和僅為0.18微米的電路線。 英特爾首款微處理器4004的運行速率為108KHz,而現今的英特爾奔騰4處理器的初速率已經達到了1.5GHz,如果汽車的速度也能有同等提升的話,那麼從舊金山開車到紐約只需要13秒。

2001年:英特爾至強(Xeon)處理器
英特爾至強處理器的應用目標是那些即將出現的高性能和中端雙路工作站、以及雙路和多路配置的伺服器。該平台為客戶提供了一種兼具高性能和低價格優勢的全新操作系統和應用選擇。與基於英特爾 奔騰III至強處理器的系統相比,採用英特爾至強處理器的工作站根據應用和配置的不同,其性能預計可提升30%到90%左右。該處理器基於英特爾NetBurst™ 架構,設計用於為視頻和音頻應用、高級互聯網技術及復雜3D圖形提供所需要的計算動力。

2001年:英特爾安騰(Itanium)處理器
英特爾安騰處理器是英特爾推出的64位處理器家族中的首款產品。該處理器是在基於英特爾簡明並行指令計算(EPIC)設計技術的全新架構之基礎上開發製造的,設計用於高端、企業級伺服器和工作站。該處理器能夠為要求最苛刻的企業和高性能計算應用(包括電子商務安全交易、大型資料庫、計算機輔助的機械工程以及精密的科學和工程計算)提供全球最出色的性能。

2002年:英特爾安騰2處理器(Itanium2) Intel Pentium 4 /Hyper Threading處理器
英特爾安騰2處理器是安騰處理器家族的第二位成員,同樣是一款企業用處理器。該處理器家族為數據密集程度最高、業務最關鍵和技術要求最高的計算應用提供英特爾 架構的出色性能及規模經濟等優勢。該處理器能為資料庫、計算機輔助工程、網上交易安全等提供領先的性能。
英特爾推出新款Intel Pentium 4處理器內含創新的Hyper-Threading(HT)超執行緒技術。超執行緒技術打造出新等級的高效能桌上型計算機,能同時快速執行多項運算應用, 或針對支持多重執行緒的軟體帶來更高的效能。超執行緒技術讓計算機效能增加25%。除了為桌上型計算機使用者提供超執行緒技術外,英特爾亦達成另一項計算 機里程碑,就是推出運作時脈達3.06GHz的Pentium 4處理器,是首款每秒執行30億個運算周期的商業微處理器,如此優異的性能要歸功於當時業界最先進的0.13微米製程技術,翌年,內建超執行緒技術的 Intel Pentium4處理器時脈達到3.2GHz。

2003年:英特爾 奔騰 M(Pentium M) /賽揚 M (Celeron M)處理器
英特爾奔騰M處理器,英特爾855晶元組家族以及英特爾PRO/無線2100網卡是英特爾迅馳™ 移動計算技術的三大組成部分。英特爾迅馳移動計算技術專門設計用於攜帶型計算,具有內建的無線區域網能力和突破性的創新移動性能。該處理器支持更耐久的電池使用時間,以及更輕更薄的筆記本電腦造形。

2005年:Intel Pentium D 處理器
首顆內含2個處理核心的Intel Pentium D處理器登場,正式揭開x86處理器多核心時代。(綽號膠水雙核,被別人這樣叫是有原因的,PD由於高頻低能噪音大,所以才有這個稱號)

2005年:Intel Core處理器
這是英特爾向酷睿架構邁進的第一步。但是,酷睿處理器並沒有採用酷睿架構,而是介於NetBurst和Core之間(第一個基於Core架構的處理器是酷睿2)。最初酷睿處理器是面向移動平台的,它是英特爾迅馳3的一個模塊,但是後來蘋果轉向英特爾平台後推出的台式機就是採用的酷睿處理器。
酷睿使雙核技術在移動平台上第一次得到實現。與後來的酷睿2類似,酷睿仍然有數個版本:Duo雙核版,Solo單核版。其中還有數個低電壓版型號以滿足對節電要求苛刻的用戶的要求。

2006年:Intel Core 2 (酷睿2,俗稱「扣肉」)/ 賽揚 Duo 處理器
Core微架構桌面/移動處理器:桌面處理器核心代號Conroe。將命名為Core 2 Duo/Extreme家族,其E6700 2.6GHz型號比先前推出之最強的Intel Pentium D 960(3.6GHz)處理器,在效能方面提升了40%,省電效率亦增加40%,Core 2 Duo處理器內含2.91億個晶體管。移動處理器核心代號Merom。是迅馳3.5和迅馳4的處理器模塊。當然這兩種酷睿2有區別,最主要的就是將FSB由667MHz/533MHz提升到了800MHz。

2007年:Intel 四核心伺服器用處理器
英特爾已經推出了若干四核台式機晶元,作為其雙核Quad和Extreme家族的組成部分。在伺服器領域,英特爾將在其低電壓3500和7300系列中交付使用不少於具有9個四核處理器的Xeons。

2007年:Intel QX9770四核至強45nm處理器
先進製程帶來的節能冷靜,HI-K的引進使CPU更加穩定。先進的SSE4.1指令集、快速除法器,卓越的執行效率,INTEL在處理器方面不斷領先

2008年:Intel Atom凌動處理器
低至0.6W的超低功耗處理器,帶給大家的是難以想像的節能與冷靜

未來:Intel Larrabee計劃
Larrabee核心是由1990年的P54C演變而來的,即第二款Pentium處理器,當然生產工藝已經進化到45nm,同時也加入了大量新技術,使其得以重新煥發青春。
Larrabee發布的時候將有32個IA核心(現在的樣品是16/24個),支持64位技術,並很可能會支持MMX指令集。事實上,Larrabee的指令集被稱為AVX(高級矢量指令集),整數512位,浮點1024位。Stiller估計Larrabee每Hz的理論單精度浮點性能為32Flops,也就是在2GHz下能超過2TFlops。

Intel TerraFlops 80核處理器
這里的「80核」只是一種概念,並不是說處理器正好擁有80個物理核心,而是指處理器擁有大量規模化並行處理能力的核心。TerraFlops處理器將擁有至少28個核心,不同的核心有不同的處理領域,整個處理器運算速度將達到每秒萬億次,相當於現在對普通用戶還遙不可及的超級計算機的速度。目前,TerraFlops計劃只接納商業和政府用戶,但是根據英特爾的計劃,個人用戶也會在將來使用上萬億次計算能力的多核處理器。

英特爾處理器核的特點在於具有稱之為「寬動態執行」的功能。更為重要的是,其工作功耗比為奔騰4提供處理能力的Netburst架構要低。「我們期望到今年底自頂向下百分之百地採用核微架構,」Otellini說,「今年全年,我們正以非常快的速度取代所有的產品,甚至以核微架構的變種滲透到奔騰處理器和賽揚處理器的領域。這就賦予我們在每一個領域的性能領先地位,並賦予我們高度的成本優勢。」

3月26日,英特爾公司總裁兼首席執行官保羅·歐德寧在北京宣布:英特爾將投資25億美元在大連興建一座先進的300毫米晶圓製造廠。

閱讀全文

與amd股票歷史數據相關的資料

熱點內容
姜慧恩演的片 瀏覽:924
最新帶撓腳心的電影 瀏覽:117
劉智苑健身是什麼電影 瀏覽:294
韓國恐怖電影失蹤免費觀看 瀏覽:899
韓劇電影免費看倫理 瀏覽:373
韓國最好看的三極推薦 瀏覽:503
兩個男人一起做鴨子的電影 瀏覽:745
國產恐怖片反派帶著面具拿著菜刀 瀏覽:522
可可托海 電影 瀏覽:472
池恩瑞的作品 瀏覽:18
巨貓電影 瀏覽:178
吃人奶 片段 瀏覽:168
啄木鳥電影都有哪些 瀏覽:298
江湖左手誰演的 瀏覽:670
部隊題材電影軍人可以去影院免費看嗎 瀏覽:564
章子怡 床戲 瀏覽:718
結婚過的男女電影 瀏覽:163
床戲影視 瀏覽:182
想看片卻找不到網站 瀏覽:724
國語電影免費在線 瀏覽:808