㈠ 怎樣用python處理股票
用Python處理股票需要獲取股票數據,以國內股票數據為例,可以安裝Python的第三方庫:tushare;一個國內股票數據獲取包。可以在網路中搜索「Python tushare」來查詢相關資料,或者在tushare的官網上查詢說明文檔。
㈡ 如何用python抓取股票數據
很多伺服器通過瀏覽器發給它的報頭來確認是否是人類用戶,所以我們可以通過模仿瀏覽器的行為構造請求報頭給伺服器發送請求。伺服器會識別其中的一些參數來識別你是否是人類用戶,很多網站都會識別User-Agent這個參數,所以請求頭最好帶上。
有一些警覺性比較高的網站可能還會通過其他參數識別,比如通過Accept-Language來辨別你是否是人類用戶,一些有防盜鏈功能的網站還得帶上referer這個參數等等。
㈢ 怎麼用python計算股票
作為一個python新手,在學習中遇到很多問題,要善於運用各種方法。今天,在學習中,碰到了如何通過收盤價計算股票的漲跌幅。
第一種:
讀取數據並建立函數:
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import spline
from pylab import *
import pandas as pd
from pandas import Series
a=pd.read_csv('d:///1.csv',sep=',')#文件位置
t=a['close']
def f(t):
s=[]
for i in range(1,len(t)):
if i==1:
continue
else:
s.append((t[i]-t[i-1])/t[i]*100)
print s
plot(s)
plt.show()
f(t)
第二種:
利用pandas裡面的方法:
import pandas as pd
a=pd.read_csv('d:///1.csv')
rets = a['close'].pct_change() * 100
print rets
第三種:
close=a['close']
rets=close/close.shift(1)-1
print rets
總結:python是一種非常好的編程語言,一般而言,我們可以運用構建相關函數來實現自己的思想,但是,眾所周知,python中裡面的有很多科學計算包,裡面有很多方法可以快速解決計算的需要,如上面提到的pandas中的pct_change()。因此在平時的使用中應當學會尋找更好的方法,提高運算速度。
㈣ 已知股票數據,如何用Python繪制k線日對應數據
我沒遇到過 只是自己寫過
有點經驗
先確定時間片
然後再把tick插入就行了
㈤ python怎麼分析所有股票
在 Python的QSTK中,是通過 s_datapath 變數,定義相應股票數據所在的文件夾。一般可以通過 QSDATA 這個環境變數來設置對應的數據文件夾。
具體的股票數據來源,例如滬深、港股等市場,你可以使用免費的WDZ程序輸出相應日線、5分鍾數據到 s_datapath 變數所指定的文件夾中。然後可使用 Python的QSTK中,qstkutil.DataAccess進行數據訪問。
㈥ 如何用python計算某支股票持有90天的收益率
defget(self,get,money):
print「ATM:」
print「yourmoneyis+「,self.get,」%aday
self.today=self.money*(self.get/100)+self.money
print「nowyouhave」,self.today
self.tomorrow=self.today*(self.get/100)+self.today
print「tomorrowyouwellhave」,self.tomorrow
get(50,10000)
這個代碼會給你1天後和2天後的余額,如果要顯示九十天,還請您自己打完
㈦ 如何使用python實現EXCEL數據統計功能
Excel是數據分鍾中最常用的工具,通過Python和Excel功能對比,介紹如何使用Python通過函數式編程完成Excel中的數據處理及分析工作。
在Python中pandas庫用於數據處理,我們從1787頁的pandas官網文檔中總結出最常用的36個函數,通過這些函數介紹如何通過Python完成數據生成和導入,數據清洗,預處理,以及最常見的數據分類,數據篩選,分類匯總,透視等最常見的操作。
第7章 數據匯總本章主要講解如何對數據進行分類匯總。Excel中使用分類匯總和數據透視可以按特定維度對數據進行匯總;Python中使用的主要函數是groupby和pivot_table.
㈧ 如何用python 取所有股票一段時間歷史數據
各種股票軟體,例如通達信、同花順、大智慧,都可以實時查看股票價格和走勢,做一些簡單的選股和定量分析,但是如果你想做更復雜的分析,例如回歸分析、關聯分析等就有點捉襟見肘,所以最好能夠獲取股票歷史及實時數據並存儲到資料庫,然後再通過其他工具,例如SPSS、SAS、EXCEL或者其他高級編程語言連接資料庫獲取股票數據進行定量分析,這樣就能實現更多目的了。
㈨ Python 如何爬股票數據
現在都不用爬數據拉,很多量化平台能提供數據介面的服務。像比如基礎金融數據,包括滬深A股行情數據,上市公司財務數據,場內基金數據,指數數據,期貨數據以及宏觀經濟數據;或者Alpha特色因子,技術分析指標因子,股票tick數據以及網路因子數據這些數據都可以在JQData這種數據服務中找到的。
有的供應商還能提供level2的行情數據,不過這種比較貴,幾萬塊一年吧