❶ 如何利用網路上的現成大數據來進行超短線炒股
我們利用網路大數據分析技術,從互聯網上檢索最熱的關鍵詞,然後從關鍵詞中檢出相對應的股票名稱或代碼,依據各類大數據分析加權系數演算法,選出優選股。\n\n搜索指數:\n\n 搜索指數是以搜索引擎海量網民行為數據為基礎的數據分享平台,是當前互聯網乃至整個數據時代最重要的統計分析平台之一,自發布之日便成為眾多企業營銷決策的重要依據。搜索指數能夠告訴用戶:某個關鍵詞在搜索引擎上的搜索規模有多大,一段時間內的漲跌態勢以及相關的新聞輿論變化,關注這些詞的網民是什麼樣的,分布在哪裡,同時還搜了哪些相關的詞。例如index..com \n\n新聞熱度:\n\n 10大新聞網站的財經頻道每天都在報道上市企業和市場情況,爬蟲根據財經首頁的頁面進行板塊和行業等數據進行分析熱門股票近日的曝光率。\n\n評論喜好:\n\n 股民喜歡在股吧和貼吧進行評論,爬蟲根據網民發貼的情緒化詞彙進行判斷,出現負面詞彙如不文明用語時,進行必要的扣分等操作。\n\n自選股關注度:\n\n 軟體對用戶自選股進行統計,關注人數高的股票自然會被納入熱門股票之列。\n\n資金流向:\n\n 軟體即時跟蹤股票的資金流向,特別關注莊家的大資金流向,對其拉升等動作進行大數據判斷。\n\n圖形分析:\n\n 軟體對圖形分析做了較多的大數據資料,並加入了自我學習的能力,如判斷歷史上的黃金坑,判斷雙底,計算斜率等。\n\n綜合動能:\n\n 除了以上指標,軟體還結合傳統的MACD\KDJ等數據,按不同的指標進行打分,最終得出動能分。然後即時對高分股票按歷史數據進行判斷,推薦出最合適的股票供用戶參考,當動能衰減時則會被沽出。\n\n\n\n 將軟體停留在在倉界面,會自動更新股股價及進行買賣指令的操作。\n\n\n\n
❷ 如何進行大數據分析及處理
聚雲化雨的處理方式
聚雲:探碼科技全面覆蓋各類數據的處理應用。以數據為原料,通過網路數據採集、生產設備數據採集的方式將各種原始數據凝結成雲,為客戶打造強大的數據存儲庫;
化雨:利用模型演算法和人工智慧等技術對存儲的數據進行計算整合讓數據與演算法產生質變反應化雲為雨,讓真正有價值的數據流動起來;
開渠引流,潤物無聲:將落下「雨水」匯合成數據湖泊,對數據進行標注與處理根據行業需求開渠引流,將一條一條的數據支流匯合集成數據應用中,為行業用戶帶來價值,做到春風化雨,潤物無聲。
❸ 大家都是怎麼對股票進行分析的呢
我是用股查查進行基本面分析的,推薦使用,覺得挺好。
❹ 股票數據分析方法
股票價格的漲跌,簡單來說,供求決定價格,買的人多價格就漲,賣的人多價格就跌。做成買賣不平行的原因是多方面的,影響股市的政策面、基本面、技術面、資金面、消息面等,是利空還是利多,升多了會有所調整,跌多了也會出現反彈,這是不變的規律。
❺ 大數據分析股票,有什麼好的方法
大數據只是做好宏觀經濟走向,但是落實到具體某隻股票,就顯得不那麼使用了
❻ 如何運用大數據
1.可視化分析
大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了。
2. 數據挖掘演算法
大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這些被全世界統
計
學家所公認的各種統計方法(可以稱之為真理)才能深入數據內部,挖掘出公認的價值。另外一個方面也是因為有這些數據挖掘的演算法才能更快速的處理大數據,如
果一個演算法得花上好幾年才能得出結論,那大數據的價值也就無從說起了。
3. 預測性分析
大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,之後便可以通過模型帶入新的數據,從而預測未來的數據。
4. 語義引擎
非結構化數據的多元化給數據分析帶來新的挑戰,我們需要一套工具系統的去分析,提煉數據。語義引擎需要設計到有足夠的人工智慧以足以從數據中主動地提取信息。
5.數據質量和數據管理。 大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。
大數據分析的基礎就是以上五個方面,當然更加深入大數據分析的話,還有很多很多更加有特點的、更加深入的、更加專業的大數據分析方法。
大數據的技術
數據採集: ETL工具負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。
數據存取: 關系資料庫、NOSQL、SQL等。
基礎架構: 雲存儲、分布式文件存儲等。
數
據處理: 自然語言處理(NLP,Natural Language
Processing)是研究人與計算機交互的語言問題的一門學科。處理自然語言的關鍵是要讓計算機」理解」自然語言,所以自然語言處理又叫做自然語言理
解也稱為計算語言學。一方面它是語言信息處理的一個分支,另一方面它是人工智慧的核心課題之一。
統計分析:
假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、 方差分析 、
卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、
因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。
數
據挖掘: 分類
(Classification)、估計(Estimation)、預測(Prediction)、相關性分組或關聯規則(Affinity
grouping or association rules)、聚類(Clustering)、描述和可視化、Description and
Visualization)、復雜數據類型挖掘(Text, Web ,圖形圖像,視頻,音頻等)
模型預測 :預測模型、機器學習、建模模擬。
結果呈現: 雲計算、標簽雲、關系圖等。
大數據的處理
1. 大數據處理之一:採集
大
數據的採集是指利用多個資料庫來接收發自客戶端(Web、App或者感測器形式等)的
數據,並且用戶可以通過這些資料庫來進行簡單的查詢和處理工作。比如,電商會使用傳統的關系型資料庫MySQL和Oracle等來存儲每一筆事務數據,除
此之外,Redis和MongoDB這樣的NoSQL資料庫也常用於數據的採集。
在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時
有可能會有成千上萬的用戶
來進行訪問和操作,比如火車票售票網站和淘寶,它們並發的訪問量在峰值時達到上百萬,所以需要在採集端部署大量資料庫才能支撐。並且如何在這些資料庫之間
進行負載均衡和分片的確是需要深入的思考和設計。
2. 大數據處理之二:導入/預處理
雖然採集端本身會有很多資料庫,但是如果要對這些
海量數據進行有效的分析,還是應該將這
些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。也有一些用戶會在導入時使
用來自Twitter的Storm來對數據進行流式計算,來滿足部分業務的實時計算需求。
導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。
3. 大數據處理之三:統計/分析
統
計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通
的分析和分類匯總等,以滿足大多數常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基於
MySQL的列式存儲Infobright等,而一些批處理,或者基於半結構化數據的需求可以使用Hadoop。
統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。
4. 大數據處理之四:挖掘
與
前面統計和分析過程不同的是,數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數
據上面進行基於各種演算法的計算,從而起到預測(Predict)的效果,從而實現一些高級別數據分析的需求。比較典型演算法有用於聚類的Kmeans、用於
統計學習的SVM和用於分類的NaiveBayes,主要使用的工具有Hadoop的Mahout等。該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並
且計算涉及的數據量和計算量都很大,常用數據挖掘演算法都以單線程為主。
整個大數據處理的普遍流程至少應該滿足這四個方面的步驟,才能算得上是一個比較完整的大數據處理。
❼ 如何用大數據炒股
方法/步驟
1
下載,安裝app。 網路搜索 網路股市通,並根據手機選擇版本安裝(安卓的安裝安卓的,iphone安裝ios版本)
2
安裝,app這個不多說了。打開app,界面如圖所示。可以看到有自選股、資訊、智能選股、行情、我 五個標簽頁,自選股、行情和「我"就不多說了,炒股的都知道,我們主要要看的是 資訊和智能選股兩個標簽頁的內容
3
打開「資訊」,裡面是根據網路大數據篩選出來的一些可能對股市有比較大影響的新聞。雖然現在新聞到處都能看到,但是對於股市新手來說,分辨哪些新聞比較重要是一件十分困難的事情,我一般是看這里的概念熱點,對於追熱點非常有用。
4
下面介紹最最有用的「智能選股」,打開,可以看到有「最新熱點」、「異動個股」、「優選公告」3項
5
最新熱點,這里綜合了最近搜索最熱的話題新聞,並且列出了相關的股票,非常有價值,可以據此布局;
6
異動個股,這里整理出了盤中資金變化較大,有可能大漲大跌的股票,適合作參考
7
優選公告,這是我最看重的地方了。 新手對於上市公司的公告,看不懂,看懂了也不知道對於股票走勢有什麼影響。而這里則根據歷史數據,統計出了該股票同類公告引起的漲跌,很準的。
❽ 股票技術分析報告應該怎麼做
股票技術分析報告寫法:
1、需要寫明公司名稱,代碼,主營業務,主要股東,歷史業績,注冊地,以及獎項
2、基本分析:財務指標分析 ,主營業務詳細分析,生產技術分析,管理團隊及主要股東分析,以及目前股價分析
3、側重分析:公司營業分析,過往業績分析,目前市場分析
4、最終結論
❾ 股票市場的大數據量化分析是怎麼做的
會做的都不會和你說的,簡單來說就是收集數據,實現大數據ai
❿ 股票大數據分析可以嗎有推薦嗎
在用RC智能雲,很不錯的