① 人工通用智能(AGI)会成为人类生存的威胁,还是生存的希望
为什么对这种技术有这样的分歧?双方如何看待世界如此不同?它归结为五个关键问题:
我们离无人监督的学习者有多远?
现在,我们所拥有的那种狭窄的AI必须用人类精心准备和策划的数据集进行人工训练。
例如,要教AI识别猫的照片,你需要一个庞大的照片数据库,每个照片都被人类标记为猫或非猫。即便AI可以像任何人一样准确地识别猫,但是,这不是通用的,你如果想要教它识别狗,就需要从头开始。
我们是否已开始构建真正的AI?
如前所述,我们今天所拥有的AI类型称为窄AI,因为它只能做一件特定的事情。
狭义的AI是建立广义AGI的第一步吗?许多对AGI感到困扰的人都认为我们正在努力的发展狭窄的人工智能。
另一个阵营认为狭窄的人工智能与AGI所需的技术完全不同。虽然他们的名字中都碰巧有“人造”和“智慧”的字样,但这就是相似之处的结束。
这是人工智能未来悬而未决的五个问题。
关注AGI阵营认为,通过人工智能,机器人和自动化将很快完成所有工作,几乎所有人都不用工作。不关心的阵营坚持认为,自动化和人工智能不会直接与人类竞争,而是提高人类的生产力,创造更好,更高薪的工作。
我们虽然正处于未知的水域,但是,有一点是肯定的:这些未知是未来事物的先兆。当我们开始努力应对数字生活和机器意识时,我们将处于更加不稳定的状态。
② 现在通用人工智能界有哪些大牛
人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。“人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的,现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展,一方面又转向更有意义、更加困难的目标。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外, 人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。
③ 人工智能的产品都体现在什么方面
人工智能在普通的模式识别、专家系统等方面已经做得不错,比如语音识别、手写识别,都已经相当实用,下棋能超过人类冠军,自动驾驶也快实用了。但是每个人工智能系统都需要人类专家大量的工作,还没有通用的人工智能系统,能自己学习,变成各种专家。
④ 强人工智能与通用人工智能有什么本质区别
1、强人工智能和弱人工智能
人工智能的一个比较流行的定义,也是该领域较早的定义,是由当时麻省理工学院的约翰·麦卡锡在1956年的 达特矛斯会议上提出的:人工智能就是要让机器的行为看起来就像是人所表现出的智能行为一样。但是这个定义似乎忽略了强人工智能的可能性。另一个定义指人工智能是人造机器所表现出来的智能。总体来讲,目前对人工智能的定义大多可划分为四类,即机器“像人一样思考”、“像人一样行动”、“理性地思考”和“理性地行动”。这里“行动”应广义地理解为采取行动,或制定行动的决策,而不是肢体动作。
2、强人工智能
强人工智能观点认为有可能制造出真正能推理和解决问题的智能机器,并且,这样的机器能将被认为是有知觉的,有自我意识的。强人工智能可以有两类:类人的人工智能,即机器的思考和推理就像人的思维一样。非类人的人工智能,即机器产生了和人完全不一样的知觉和意识,使用和人完全不一样的推理方式
3、弱人工智能
弱人工智能观点认为不可能制造出能真正地推理和解决问题的智能机器,这些机器只不过看起来像是智能的,但是并不真正拥有智能,也不会有自主意识。
弱人工智能是对比强人工智能才出现的,因为人工智能的研究一度处于停滞不前的状态下,直到类神经网络有了强大的运算能力加以模拟后,才开始改变并大幅超前。但人工智能研究者不一定同意弱人工智能,也不一定在乎或者了解强人工智能和弱人工智能的内容与差别,对定义争论不休。
就现下的人工智能研究领域来看,研究者已大量造出看起来像是智能的机器,获取相当丰硕的理论上和实质上的成果,如2009年康乃尔大学教授Hod Lipson 和其博士研究生Michael Schmidt 研发出的 Eureqa计算机程序,只要给予一些数据,这计算机程序自己只用几十个小时计算就推论出牛顿花费多年研究才发现的牛顿力学公式,等于只用几十个小时就自己重新发现牛顿力学公式,这计算机程序也能用来研究很多其他领域的科学问题上。这些所谓的弱人工智能在神经网络发展下已经有巨大进步,但对于要如何集成成强人工智能,现在还没有明确定论。
4、对强人工智能的哲学辩论
关于强人工智能的争论,不同于更广义的一元论和二元论的争论。其争论要点是:如果一台机器的唯一工作原理就是转换编码数据,那么这台机器是不是有思维的?希尔勒认为这是不可能的。他举了个中文房间的例子来说明,如果机器仅仅是转换数据,而数据本身是对某些事情的一种编码表现,那么在不理解这一编码和这实际事情之间的对应关系的前提下,机器不可能对其处理的数据有任何理解。基于这一论点,希尔勒认为即使有机器通过了图灵测试,也不一定说明机器就真的像人一样有思维和意识。
需要指出的是,弱人工智能并非和强人工智能完全对立,也就是说,即使强人工智能是可能的,弱人工智能仍然是有意义的。至少,今日的计算机能做的事,像算术运算等,在一百多年前是被认为很需要智能的。并且,即使强人工智能被证明为可能的,也不代表强人工智能必定能被研制出来。
⑤ 人工智能的定义是什么
人工智能之父 John McCarthy说:人工智能就是制造智能的机器,更特指制作人工智能的程序。人工智能模仿人类的思考方式让计算机能智能的思考问题,人工智能通过研究人类大脑的思考、学习和工作方式,然后将研究结果作为开发智能软件和系统的基础。
人工智能的概念很宽,所以人工智能也分很多种,我们按照人工智能的实力将其分成三大类:
1、弱人工智能
弱人工智能Artificial Narrow Intelligence (ANI):弱人工智能是擅长于单个方面的人工智能。比如有能战胜象棋世界冠军的人工智能,但是它只会下象棋,你要问它怎样更好地在硬盘上储存数据,它就不知道怎么回答你了。比如第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能机器人,Alpha Go其实也是一个弱人工智能。
2、强人工智能
强人工智能又称通用人工智能或完全人工智能, 指的是可以胜任人类所有工作的人工智能。一个可以称得上强人工智能的程序, 大概需要具备以下几方面的能力:存在不确定因素时进行推理,使用策略,解决问题,制定决策的能力;知识表示的能力,包括常识性知识的表示能力;规划能力;学习能力;使用自然语言进行交流沟通的能力;将上述能力整合起来实现既定目标的能力。
3、超人工智能
假设计算机程序通过不断发展,可以比世界上最聪明、最有天赋的人类还聪明,那么由此产生的人工智能系统就可以被称为超人工智能。超人工智能的定义最为模糊,因为没人知道, 超越人类最高水平的智慧到底会表现为何种能力。如果说对于强人工智能,我们还存在从技术角度进行探讨的可能性的话,那么,对于超人工智能,今天的人类大多就只能从哲学或科幻的角度加以解析了。
⑥ 人工智能是什么
人工智能主要就是让代替人工的机器拥有和人类相似的智力,而在网络中对人工智能的定义为开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
其实人工智能就是计算机科学的一个分支,在研究人类智能的根本原因中,引发了这种通过模拟人类的行为方法来让机器也拥有和人类相似的能力,也是因为拥有这种能力,被广泛的实用,比如机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能在出现开始,所受的关注也是日益增多,进而人们对它的要求也是变得多了,为了满足人们的要求,人工智能的技术也是在不断的完善,并使用范围也随之增加,而未来随着科技的更加先进,相信人工智能的技术也会更加的成熟。人工智能可以对人类的意识、思维的信息过程进行模拟,所以人工智能拥有的不是人的智能,而是和人类非常相似的一种能力,这种能力随着发展甚至会有可能超过人类的智能。
人工智能的研究是非常复杂的,如果想要从事这项研究的话,那必须要对计算机知识,心理学和哲学等有了解。人工智能因其是个比较广泛的科学的特性,而由多种领域组成,像机器学习、计算机视觉等等,其实,总结下来就是,人工智能主要研究就是让机器可以像人一样的工作,代替人类做些比较复杂的事情。
人工智能发展以来主要的使用范围是机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。
另外人工智能也可以分为两部分理解,也就是人工与智能,人工就是人工系统,对于这个定义大家的看法还都是非常相似的。而对于智能的理解就比较多了,并且也不统一,因为这涉及到一些意识、思维、自我等等的问题,比较复杂,而人类了解的智能其实就是自己本身的智能,不过对于自身的理解也是有限的,对于人的智能的了解更是有限,所以对于智能的定义当然没有一个统一的答案了。
人工智能以其拥有简单智能的特点主要使用在计算机领域中,并受到很大的重视。
人工智能_线性代数基础-矩阵的运算_加减法_转置
⑦ 人工智能有哪些研究方向
人工智能可分为六个研究方向:
1、机器视觉,包括3D重建,模式识别,图像理解等。
2、语言理解和沟通,包括语音识别,综合,人机对话,机器翻译等;
3、机器人技术,包括力学,控制,设计,运动规划,任务规划等;
4、认知和推理,包括各种身体和社会常识的认知和推理;
5、游戏和道德,包括多智能体,机器人和社会整合的互动,对抗和合作;
6、机器学习,包括各种统计建模,分析工具和计算方法;
人工智能作为下一代信息技术的重要领域,是一种具有普遍性的新型通用技术,可应用于经济社会,生产和生活的各个方面(Trajtenberg,2018); 无意中与此同时,人工智能已经渗透到生产和生活的许多方面,并悄然改变了经济和社会组织的运作模式。 虽然人工智能技术可以使人类摆脱繁琐的程式化工作,但它也是应对人口老龄化的有效手段,但其推广也意味着在应用领域取代就业领域(部分),并将 最终影响就业结构和收入分配格局。