『壹』 如何处理非结构化数据
非结构化数据
已经存在相当长一段时间了,它出现的时间比计算机诞生的时间还要早。像古埃及的象形文字(升体书)、流传已久的各大宗教经文等等,都早在芯片出现以前就有了。而搜索引擎同样也存在了相当长一段,虽然没有印刷文字的历史那么久远。不过,要说揭开保存在这些非结构化数据里的宝贵信息的秘密,就算是用现在已经非常成熟的搜索引擎,也还没有得到什么理想效果。为什么会这样呢?进去的是垃圾,出来的必是废物(Garbage In, Garbage Out)
对搜索引擎而言,要解开非结构化数据中真正有用的东西,还缺乏一个重要的因素。为了让大家容易理解这个欠缺的因素,这里引用一下IT界里的一句明言“Garbage In, Garbage Out”,简称GIGO,类似于“种瓜得瓜,种豆得豆”的意思,也就是说如果你输入到计算机里的是一些乱七八糟的无用信息,那么计算机输出的结果也是无用的废品,也代表了信息技术最难解决的问题之一,体现了对数据质量的要求。当我们用一个强大的搜索引擎来对基本上未经净化、未经清洗、未经集成的文本数据进行搜索时,会出现什么结果呢?就如上面的明言所示,搜索引擎最后返回给终端用户的结果也是未经清洗和集成的。
为了使文本搜索变得真正有意义,在执行搜索操作之前,必须把需要对其进行搜索的文本进行集成。如果完成了集成的步骤,那么你输进去的就不再是“垃圾”,而出来的也就不再是“废物”了。
互联网对垒企业数据
在互联网上搜索信息的时候,要进行数据清洗(data scrubbing)很难。试图清洗和集成遍布在互联网上的数据基本上是徒劳无益之举,就跟要把整个太平洋的水倒出来的难度差不多。
但对于企业数据来说,又是另一回事了,原因有二。首先,涉及到企业数据的话,数据量就很有限了——相对于几乎无限的互联网数据而言。其二,和互联网数据不同,几乎所有的企业数据都是和企业的业务相关的。保守而言,互联网上只有很小一部分数据是和任一企业的业务相关的,即使是像IBM这样的规模庞大,经营业务繁杂的企业。
因此,集成企业的文本数据,或者说为了搜索和分析而对这些数据进行预处理,其实现的可能性就非常大。
1)客户资料——与客户沟通有关的数据
2)安全数据——与事故、检修、维护、授权及其他安全相关的数据
3)合同数据——与企业具体的合同相关的数据
4)举证数据——与诉讼过程相关的数据
5)法规数据——与敏感的企业事件和交易等相关的描述数据集成的好处
集成企业文本数据的重要好处之一就是,这些数据一旦被集成了,就可以输入到数据库被重复使用。换言之,只需要对企业文本数据进行一次集成,就可以被重复用于搜索和分析操作,不管重复利用多好次都没问题。
『贰』 什么是结构化数据.非结构华数据,之间有什么区别
在信息社会,信息可以划分为两大类。一类信息能够用数据或统一的结构加以表示,我们称之为结构化数据,如数字、符号;而另一类信息无法用数字或统一的结构表示,如文本、图像、声音、网页等,我们称之为非结构化数据。结构化数据属于非结构化数据,是非结构化数据的特例。
随着网络技术的发展,特别是Internet和Intranet技术的飞快发展,使得非结构化数据的数量日趋增大。这时,主要用于管理结构化数据的关系数据库的局限性暴露地越来越明显。因而,数据库技术相应地进入了“后关系数据库时代”,发展进入基于网络应用的非结构化数据库时代。所谓非结构化数据库,是指数据库的变长纪录由若干不可重复和可重复的字段组成,而每个字段又可由若干不可重复和可重复的子字段组成。简单地说,非结构化数据库就是字段可变的数据库。
『叁』 什么是非结构化数据
非结构化数据是数据结构不规则或不完整,没有预定义的数据模型,不方便用数据库二维逻辑表来表现的数据。包括所有格式的办公文档、文本、图片、XML, HTML、各类报表、图像和音频/视频信息等等。
计算机信息化系统中的数据分为结构化数据和非结构化数据。非结构化数据其格式非常多样,标准也是多样性的,而且在技术上非结构化信息比结构化信息更难标准化和理解。
非结构化数据的特点:
分析数据不需要一个专业性很强的数学家或数据科学团队,公司也不需要专门聘请IT精英去做。真正的分析发生在用户决策阶段,即管理一个特殊产品细分市场的部门经理,可能是负责寻找最优活动方案的市场营销者,也可能是负责预测客户群体需求的总经理。
终端用户有能力、也有权利和动机去改善商业实践,并且视觉文本分析工具可以帮助他们快速识别最相关的问题,及时采取行动,而这都不需要依靠数据科学家。
以上内容参考:
网络-非结构化数据
『肆』 如何区分结构化数据和非结构化数据
(1)结构化数据,简单来说就是数据库。结合到典型场景中更容易理解,比如企业ERP、财务系统;医疗HIS数据库;政府行政审批;其他核心数据库等。这些应用需要哪些存储方案呢?基本包括高速存储应用需求、数据备份需求、数据共享需求以及数据容灾需求。
(2)非结构化数据库是指其字段长度可变,并且每个字段的记录又可以由可重复或不可重复的子字段构成的数据库,用它不仅可以处理结构化数据(如数字、符号等信息)而且更适合处理非结构化数据(全文文本、图像、声音、影视、超媒体等信息)。
面对海量非结构数据存储,杉岩海量对象存储MOS,提供完整解决方案,采用去中心化、分布式技术架构,支持百亿级文件及EB级容量存储,具备高效的数据检索、智能化标签和分析能力,轻松应对大数据和云时代的存储挑战,为企业发展提供智能决策。
『伍』 什么是结构化数据,非结构化数据
(1)结构化数据,简单来说就是数据库。结合到典型场景中更容易理解,比如企业ERP、财务系统;医疗HIS数据库;政府行政审批;其他核心数据库等。这些应用需要哪些存储方案呢?基本包括高速存储应用需求、数据备份需求、数据共享需求以及数据容灾需求。
(2)非结构化数据库是指其字段长度可变,并且每个字段的记录又可以由可重复或不可重复的子字段构成的数据库,用它不仅可以处理结构化数据(如数字、符号等信息)而且更适合处理非结构化数据(全文文本、图像、声音、影视、超媒体等信息)。
面对海量非结构数据存储,杉岩海量对象存储MOS,提供完整解决方案,采用去中心化、分布式技术架构,支持百亿级文件及EB级容量存储,具备高效的数据检索、智能化标签和分析能力,轻松应对大数据和云时代的存储挑战,为企业发展提供智能决策。
『陆』 什么是非结构化数据和结构化数据
(1)结构化数据,简单来说就是数据库。结合到典型场景中更容易理解,比如企业ERP、财务系统;医疗HIS数据库;政府行政审批;其他核心数据库等。这些应用需要哪些存储方案呢?基本包括高速存储应用需求、数据备份需求、数据共享需求以及数据容灾需求。
(2)非结构化数据库是指其字段长度可变,并且每个字段的记录又可以由可重复或不可重复的子字段构成的数据库,用它不仅可以处理结构化数据(如数字、符号等信息)而且更适合处理非结构化数据(全文文本、图像、声音、影视、超媒体等信息)。
面对海量非结构数据存储,杉岩海量对象存储MOS,提供完整解决方案,采用去中心化、分布式技术架构,支持百亿级文件及EB级容量存储,具备高效的数据检索、智能化标签和分析能力,轻松应对大数据和云时代的存储挑战,为企业发展提供智能决策。
『柒』 如何处理半结构化或非结构化数据交易
12月1日,区政府与中国北斗科技中心举行中北斗镁合金科技产业园项目签约仪式。区委书记王明厚,区委副书记、区长武建功,区委常委、常务副区长梁海昌,区人大副主任陈玉俊,副区长赵旭及区经信、发改、招商等部门负责人与中国北斗科技中心负责人进行了座谈。区政府与中国北斗科技中心主任范忠福签订了《中北斗镁合金科技产业园合作框架协议》。
『捌』 什么是结构化数据和非结构化数据什么是数据清洗
结构化数据,简单来说就是数据库。
相对于结构化数据(即行数据,存储在数据库里,可以用二维表结构来逻辑表达实现的数据)而言,不方便用数据库二维逻辑表来表现的数据即称为非结构化数据。
因为数据仓库中的数据是面向某一主题的数据的集合,这些数据从多个业务系统中抽取而来而且包含历史数据,这样就避免不了有的数据是错误数据、有的数据相互之间有冲突,这些错误的或有冲突的数据显然是我们不想要的,称为“脏数据”。我们要按照一定的规则把“脏数据”“洗掉”,这就是数据清洗。
『玖』 什么是结构化数据,非结构化数据
(1)结构化数据,简单来说就是数据库。结合到典型场景中更容易理解,比如企业ERP、财务系统;医疗HIS数据库;政府行政审批;其他核心数据库等。这些应用需要哪些存储方案呢?基本包括高速存储应用需求、数据备份需求、数据共享需求以及数据容灾需求。
(2)非结构化数据库是指其字段长度可变,并且每个字段的记录又可以由可重复或不可重复的子字段构成的数据库,用它不仅可以处理结构化数据(如数字、符号等信息)而且更适合处理非结构化数据(全文文本、图像、声音、影视、超媒体等信息)。
面对海量非结构数据存储,杉岩海量对象存储MOS,提供完整解决方案,采用去中心化、分布式技术架构,支持百亿级文件及EB级容量存储,具备高效的数据检索、智能化标签和分析能力,轻松应对大数据和云时代的存储挑战,为企业发展提供智能决策。
『拾』 结构化数据和非结构化数据是什么意思
结构化数据和非结构化数据是大数据的两种类型,这两者之间并不存在真正的冲突。客户如何选择不是基于数据结构,而是基于使用它们的应用程序:关系数据库用于结构化数据,大多数其他类型的应用程序用于非结构化数据。
结构化数据也称作行数据,是由二维表结构来逻辑表达和实现的数据,严格地遵循数据格式与长度规范,主要通过关系型数据库进行存储和管理。
与结构化数据相对的是不适于由数据库二维表来表现的非结构化数据,包括所有格式的办公文档、XML、HTML、各类报表、图片和音频、视频信息等。
(10)非结构化数据股票市场扩展阅读
结构化和非结构化数据之间的差异除了存储在关系数据库和存储非关系数据库之外的明显区别之外,最大的区别在于分析结构化数据与非结构化数据的便利性。针对结构化数据存在成熟的分析工具,但用于挖掘非结构化数据的分析工具正处于萌芽和发展阶段。
并且非结构化数据要比结构化数据多得多。非结构化数据占企业数据的80%以上,并且以每年55%~65%的速度增长。如果没有工具来分析这些海量数据,企业数据的巨大价值都将无法发挥。