㈠ 怎么用python计算股票
作为一个python新手,在学习中遇到很多问题,要善于运用各种方法。今天,在学习中,碰到了如何通过收盘价计算股票的涨跌幅。
第一种:
读取数据并建立函数:
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import spline
from pylab import *
import pandas as pd
from pandas import Series
a=pd.read_csv('d:///1.csv',sep=',')#文件位置
t=a['close']
def f(t):
s=[]
for i in range(1,len(t)):
if i==1:
continue
else:
s.append((t[i]-t[i-1])/t[i]*100)
print s
plot(s)
plt.show()
f(t)
第二种:
利用pandas里面的方法:
import pandas as pd
a=pd.read_csv('d:///1.csv')
rets = a['close'].pct_change() * 100
print rets
第三种:
close=a['close']
rets=close/close.shift(1)-1
print rets
总结:python是一种非常好的编程语言,一般而言,我们可以运用构建相关函数来实现自己的思想,但是,众所周知,python中里面的有很多科学计算包,里面有很多方法可以快速解决计算的需要,如上面提到的pandas中的pct_change()。因此在平时的使用中应当学会寻找更好的方法,提高运算速度。
㈡ 怎么用python panda 算股票市场收益率
1.收集数据,开盘价,收盘价,交易量
2.用pandas处理数据,处理缺失值
3.用股票收益率的公式带入
说白了,pandas只是个好用的工具,方法都是一样的,只是效率问题
有多少人工,就有多少智能
㈢ 用pandas做数据分析
这个软件做数据分析是非常不错的,值得信赖。
㈣ 我用pandas做数据处理,去重后数据怎么引用
1.queryset是查询集,就是传到服务器上的url里面的查询内容。Django会对查询返回的结果集QuerySet进行缓存,这是为了提高查询效率。也就是说,在你创建一个QuerySet对象的时候,Django并不会立即向数据库发出查询命令,只有在你需要用到这个QuerySet的时候才会这样做。
2.Objects是django实现的mvc中的m,Django中的模型类都有一个objects对象,它是一个Django中定义的QuerySet类型的对象,它包含了模型对象的实例。
3.不能,因为get可能会有异常,可以用filter函数,如下
>>> Entry.objects.filter(blog__id__exact=1)# 显示的使用__exact
>>> Entry.objects.filter(blog__id=1)# 隐含的使用__exact>>> Entry.objects.filter(blog__pk=1)# __pk 相当于 __id__exact
㈤ 怎么利用pandas做数据分析
Pandas是Python下一个开源数据分析的库,它提供的数据结构DataFrame极大的简化了数据分析过程中一些繁琐操作。
1. 基本使用:创建DataFrame. DataFrame是一张二维的表,大家可以把它想象成一张Excel表单或者Sql表。Excel 2007及其以后的版本的最大行数是1048576,最大列数是16384,超过这个规模的数据Excel就会弹出个框框“此文本包含多行文本,无法放置在一个工作表中”。Pandas处理上千万的数据是易如反掌的sh事情,同时随后我们也将看到它比SQL有更强的表达能力,可以做很多复杂的操作,要写的code也更少。
㈥ pandas 读取大文件数据怎么快速读取
import pandas as pd
data = pd.read_csv('train.csv')
train_data = data.values[0:TRAIN_NUM,1:]
train_label = data.values[0:TRAIN_NUM,0]
㈦ 关于pandas处理数据,怎么提取某一列的部分数字的值
假设有这么一个DataFrame数据:有两列,name列为姓名,age列为年龄,其中年龄为随机生成,如下图:
㈧ 求助python大神,工作实例pandas数据分析
你的意思是比较每台机的宽,不符合的挑出来? 那每台机的返回值是什么?
你需要些一个函数func func把行变量作为参数,能对每一行操作,然后dataframe.apply(func, axis=1)
㈨ 如何用pandas处理excel数据
我要介绍的第一项任务是把某几列相加然后添加一个总和栏。
首先我们将excel 数据 导入到pandas数据框架中。
import pandas as pd
import numpy as np
df = pd.read_excel("excel-comp-data.xlsx")
df.head()