㈠ 怎样用python处理股票
用Python处理股票需要获取股票数据,以国内股票数据为例,可以安装Python的第三方库:tushare;一个国内股票数据获取包。可以在网络中搜索“Python tushare”来查询相关资料,或者在tushare的官网上查询说明文档。
㈡ 已知股票数据,如何用Python绘制k线日对应数据
我没遇到过 只是自己写过
有点经验
先确定时间片
然后再把tick插入就行了
㈢ Python 如何爬股票数据
现在都不用爬数据拉,很多量化平台能提供数据接口的服务。像比如基础金融数据,包括沪深A股行情数据,上市公司财务数据,场内基金数据,指数数据,期货数据以及宏观经济数据;或者Alpha特色因子,技术分析指标因子,股票tick数据以及网络因子数据这些数据都可以在JQData这种数据服务中找到的。
有的供应商还能提供level2的行情数据,不过这种比较贵,几万块一年吧
㈣ 对股票进行指数平滑分析,是分析成交额还是市盈率
你好( ^_^)/很高兴为您解答。
对股票进行指数平滑分析,是分析成交额还是市盈率?
凡是不能蛮干,这个是有技巧的!
简单点的,同花顺旗下投资账本APP,可以导入股票基金、定期存款,数据实时同步,分析近2年收益盈亏。
另外,分析股票走势的方法很多,如下就常用的一些方法列举出来:
技术分析:
1.看K线图 股价是处于上升通道还是下跌通道?上升通道可以关注,但不要盲目追高,下跌通道不要碰。
2.看金叉死叉 当短期均线上穿中期或者长期均线时,形成最佳买点即金叉;短期均线下穿中期或者长期均线时,形成最佳卖点即死叉。这时再卖已有些下跌,因炒股软件里面的指 标有些滞后。
3.看量价关系 没放量股价在微涨,说明主力在布局;在上升通道中,明显放量但股价微跌,此时主力在盘整打压散户;放量逐渐加剧,此时拉高,主力快出货了,不要盲目追涨。 后面剧烈放量股价并未涨就是主力悄悄出货了。
基本面分析:
1.看公司有没有重组消息?重组包含很多方面。
2.看公司是否有关联交易?
3.看公司前期是否有亏损?
4.看上市公司产品是否属于国家政策扶持还是打压的?
5.看公司的盈利能力。 只要把以上的方法真正撑握了,你就是一个稳健的股票玩家了!但要注意炒股的心态!做短线,中线,长线完全看你个人的资金量了!
投资者炒股得掌握好一定的经验和技巧,这样才能分析出好的股票,平时得多看,多学,多做模拟盘,多和股坛老将们交流。吸收他们的经验。来总结一套自己炒股盈利的方法,这样炒股相对来说要稳妥得多,我现在也一直都在追踪牛股宝里的高手学习,感觉还是受益良多,愿能帮助到你,祝投资愉快!
㈤ 如何用python抓取股票数据
很多服务器通过浏览器发给它的报头来确认是否是人类用户,所以我们可以通过模仿浏览器的行为构造请求报头给服务器发送请求。服务器会识别其中的一些参数来识别你是否是人类用户,很多网站都会识别User-Agent这个参数,所以请求头最好带上。
有一些警觉性比较高的网站可能还会通过其他参数识别,比如通过Accept-Language来辨别你是否是人类用户,一些有防盗链功能的网站还得带上referer这个参数等等。
㈥ python获取一只股票的行情,为什么出现这么多问题
首先,你要确定下你的库文件是否安装正常,测试方法,就是在交互模式下测试。
其次,不要用别名,在试试。
希望能帮到你。。。。
㈦ 如何使用Python绘制光滑实验数据曲线
楼主的问题是否是“怎样描绘出没有数据点的位置的曲线”,或者是“x在某个位置时,即使没有数据,我也想知道他的y值是多少,好绘制曲线”。这就是个预测未知数据的问题。
传统的方法就是回归,python的scipy可以做。流行一点的就是机器学习,python的scikit-learn可以做。
但问题在于,仅由光强能预测出开路电压吗(当然,有可能可以预测。)?就是你的图1和图2的曲线都不能说是不可能发生的情况吧,所以想预测开路电压值还需引入其他影响因子。这样你才能知道平滑曲线到底应该像图1还是图2还是其他样子。
如果是单因子的话,从散点图观察,有点像 y = Alnx + B,用线性回归模型确定A,B的值就可以通过x预测y的值,从而绘制平滑的曲线了。
㈧ 如何用python获取股票数据
在Python的QSTK中,是通过s_datapath变量,定义相应股票数据所在的文件夹。一般可以通过QSDATA这个环境变量来设置对应的数据文件夹。具体的股票数据来源,例如沪深、港股等市场,你可以使用免费的WDZ程序输出相应日线、5分钟数据到s_datapath变量所指定的文件夹中。然后可使用Python的QSTK中,qstkutil.DataAccess进行数据访问。
㈨ python使用matplotlib怎么画光滑曲线
matplotlib 是Python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中。
它的文档相当完备,并且 Gallery页面 中有上百幅缩略图,打开之后都有源程序。因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基本上都能搞定。
在Linux下比较著名的数据图工具还有gnuplot,这个是免费的,Python有一个包可以调用gnuplot,但是语法比较不习惯,而且画图质量不高。
而 Matplotlib则比较强:Matlab的语法、python语言、latex的画图质量(还可以使用内嵌的latex引擎绘制的数学公式)。
快速绘图
matplotlib的pyplot子库提供了和matlab类似的绘图API,方便用户快速绘制2D图表。例子:
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#
coding=gbk
'''
Created
on Jul 12,2014
python
科学计算学习:numpy快速处理数据测试
@author:
皮皮
'''
importstring
importmatplotlib.pyplot
as plt
importnumpy
as np
if__name__
== '__main__':
file
= open(E:machine_learningdatasetshousing_datahousing_data_ages.txt, 'r')
linesList
= file.readlines()
#
print(linesList)
linesList
= [line.strip().split(,) forline
in linesList]
file.close()
print(linesList:)
print(linesList)
#
years = [string.atof(x[0])forx
in linesList]
years
= [x[0]forx
in linesList]
print(years)
price
= [x[1]forx
in linesList]
print(price)
plt.plot(years,
price, 'b*')#,label=$cos(x^2)$)
plt.plot(years,
price, 'r')
plt.xlabel(years(+2000))
plt.ylabel(housing
average price(*2000yuan))
plt.ylim(0,15)
plt.title('line_regression
& gradient decrease')
plt.legend()
plt.show()
㈩ 如何用python 取所有股票一段时间历史数据
各种股票软件,例如通达信、同花顺、大智慧,都可以实时查看股票价格和走势,做一些简单的选股和定量分析,但是如果你想做更复杂的分析,例如回归分析、关联分析等就有点捉襟见肘,所以最好能够获取股票历史及实时数据并存储到数据库,然后再通过其他工具,例如SPSS、SAS、EXCEL或者其他高级编程语言连接数据库获取股票数据进行定量分析,这样就能实现更多目的了。