㈠ 雪球、英为财情上面的美股行情是怎么获得的
怎么获得美股行情最权威的途径是 wind 数据库,不过都是收费的,一般是卖给企业,价格不菲
个人的话,只能找找有没有免费提供的了。没有的话就只能自己写爬虫了。
雪球、英为财情上面的美股行情经过美股研究社调查基本上都属于从数据库合作或者买卖获取,收益模式是两种之一:一是卖产品,一是卖广告。服务很多时候也是一种产品。
对于网站来说,电子商务类的网站,比如淘宝店,京东商铺,亚马逊商铺,这些都是典型的通过卖产品盈利的。
需要注意的是,这只局限于店家的店铺。对于淘宝、京东、亚马逊而言,他们很多的时候是运营平台,通过向加盟的商户收取服务费,或广告费。
媒体类的网站,广告会是更主流的商业模式。比如打开英为财情首页,我们可以看到这是一个财经类的门户网站,提供各种行情和数据。我们在页面顶部,左右侧都可以看到有横幅广告,同时页面中间,也可以看到由一些广告联盟提供的广告信息,会在页面中有所标注。(国内的网络联盟就是一个大型的广告联盟)。在页面底部,我们可以看到一些交易商的LOGO和链接,这些可以判断是合作伙伴或者广告客户。对于华尔街见闻,也可以做类似的分析。
对于不同类型的网站,他们还会有各种各样的盈利模式,如果网站所属的公司是上市公司,那可以通过查看公开的财报来查看其收入来源。
㈡ 如何通过excel获取股票列表
1这里以获取中国石油(601857)的行情为例,打开提供股市行情的网站,在页面的“个股查询”区域输入该股票代码,选择“实时行情”,单击“行情”按钮之后就可以查询中国石油的行情数据,接下来复制地址栏中网址。
2运行Excel,新建一个空白工作簿,选择“数据”选项卡中“获取外部数据”选项组中“导入外部数据一自网站”命令。
3弹出“新建Web查询’对话框,在地址栏中输入刚刚复制的地址,单击“转到”按钮,此时在下面的文本框中打开网站,单击“导入”按钮。
4弹出“导入数据”对话框,选择要插入的工作表,单击“确定”按钮即可。此时在工作表中导入了网站的数据。
㈢ 雪球是什么软件
雪球是北京雪球信息科技有限公司开发的交易类软件,它支持多家证券公司开户和交易,比如:平安证券、方正证券、国联证券、国金证券等。投资者开户后可以直接在雪球软件上交易股票、基金、可转债、国债逆回购、理财等,若之前有账户的可以直接登录交易。
温馨提示:
1、以上解释仅供参考,不作任何建议。
2、入市有风险,投资需谨慎。
应答时间:2021-04-16,最新业务变化请以平安银行官网公布为准。
[平安银行我知道]想要知道更多?快来看“平安银行我知道”吧~
https://b.pingan.com.cn/paim/iknow/index.html
㈣ 怎么将股票中的数据导出到excel
1、首先在电脑桌面上打开股票软件。
㈤ 同花顺如何查询个股的历史收盘价
同花顺如何查询个股的历史收盘价炒股就是从事股票的买卖活动。炒股的核心内容就是通过证券市场的买入与卖出之间的股价差额,获取利润。面,不再受相思之苦。你说但愿我们的爱情
㈥ 如何使用python 抓取雪球网页
现在关注一个组合,就会有持仓变动的提示了。不过我觉得这事情挺有意思的。比如可以把很多持仓的数据都抓下来,做一些综合的分析,看看现在网站上被持有最多的股票是哪一支,某一天被调入最多的又是哪一支之类。
于是我决定来抓抓看,顺便借此说说我通常用程序做自动抓取的过程。
Step.1 分析页面
要抓一个网页,首先自然是要“研究”这个网页。通常我会用两种方式:
一个是 Chrome 的 Developer Tools。通过它里面的 Network 功能可以看到页面发出的所有网络请求,而大多数数据请求都会在 XHR 标签下。点击某一个请求,可以看到其具体信息,以及服务器的返回结果。很多网站在对于某些数据会有专门的请求接口,返回一组 json 或者 XML 格式的数据,供前台处理后显示。
另一个就是直接查看网页源代码。通常浏览器的右键菜单里都有这个功能。从页面的 HTML 源码里直接寻找你要的数据,分析它格式,为抓取做准备。
对于雪球上的一个组合页面 粗略地看了一下它发出的请求,并没有如预想那样直接找到某个数据接口。看源代码,发现有这样一段:
SNB.cubeInfo = {"id":10289,"name":"誓把老刀挑下位","symbol":"ZH010389" ...此处略过三千字... "created_date":"2014.11.25"}
SNB.cubePieData = [{"name":"汽车","weight":100,"color":"#537299"}];
cubeInfo 是一个 json 格式的数据,看上去就是我们需要的内容。一般我会找个格式化 json 的网站把数据复制进去方便查看。
这应该就是组合的持仓数据。那么接下来,一切似乎都简单了。只要直接发送网页请求,然后把其中 cubeInfo 这段文字取出,按 json 读出数据,就完成了抓取。甚至不用动用什么 BeautifulSoup、正则表达式。
Step.2 获取页面
分析完毕,开抓。
直接 urllib.urlopen 向目标网页发送请求,读出网页。结果,失败了……
看了下返回结果:
403 Forbidden
You don't have permission to access the URL on this server. Sorry for the inconvenience.
被拒了,所以这种赤裸裸地请求是不行的。没关系,那就稍微包装一下:
send_headers = {
'User-Agent':'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/43.0.2357.81 Safari/537.36',
'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Connection':'keep-alive',
'Host':'xueqiu.com',
'Cookie':r'xxxxxx',
}
req = urllib2.Request(url, headers=send_headers)
resp = urllib2.urlopen(req)
html = resp.read()
header 数据都可以从 Developer Tools 里拿到。这次顺利抓到页面内容。
一般网站或多或少都会对请求来源做一些阻拦,通过加 header 可以搞定大部分情况。
Step.3 提取数据
因为这个数据比较明显,直接用通过一些字符串查找和截取操作就可以取出来。
pos_start = html.find('SNB.cubeInfo = ') + len('SNB.cubeInfo = ')
pos_end = html.find('SNB.cubePieData')
data = html[pos_start:pos_end]
dic = json.loads(data)
dic 就是一个包含数据的字典对象。之后想干什么就随便你了。
对于复杂一点的情况,可以通过 BeautifulSoup 来定位 html 标签。再不好办的,就用正则表达式,基本都可以解决掉。
Step.4 处理数据
因为我想对数据进行持久化存储,并且做展示和分析,所以我用了 django 里的 ORM 来处理抓下来的数据。
# add Portfolio
portfolio, c = models.Portfolio.objects.get_or_create(code=dic['symbol'])
portfolio.name = dic['name']
portfolio.earnings = dic['total_gain']
portfolio.save()
# add Stock
stocks = dic['view_rebalancing']['holdings']
for s in stocks:
stock, c = models.Stock.objects.get_or_create(code=s['stock_symbol'])
stock.name = s['stock_name']
stock.count += 1
stock.weight += s['weight']
stock.save()
Portfolio 记录下组合及其收益,Stock则记录每支股票的被收录数和总收录份额。
对于抓取到的,一般也可以存在文件中,或者直接通过 SQL 存入数据库,视不同情况和个人喜好而定。
Step.5 批量抓取
前面的一套做下来,就完整地抓取了一组数据。要达到目的,还要设计一下批量抓取的程序。
一个要解决的问题就是如何获得组合列表。这个可以再通过另一个抓取程序来实现。然后根据这些列表来循环抓取就可以了。
若要细究,还要考虑列表如何保存和使用,如何处理抓取失败和重复抓取,如何控制抓取频率防止被封,可否并行抓取等等。
Step.6 数据分析
数据有了,你要怎么用它,这是个很大的问题。可以简单的统计现象,也可以想办法深入分析背后隐藏的逻辑。不多说,我也还只是在摸索之中。
㈦ 达内 股票数据雪球 雪球怎么跟股票
这家的数据还算不错,可以
㈧ 如何通过雪球查询股票之前的变动状况
一. 雪球公司介绍
雪球 聪明的投资者都在这里。
web 1.0:新闻资讯,股价信息,K线图
web 2.0:SNS 订阅,分享,聊天
web 3.0:移动 APP,交易闭环
雪球现在员工数还不到100,其中技术人员占一半。去年9月C轮融资4kw刀。我们现在的技术栈由下列组件组成:Java,Scala,Akka,Finagle,Nodejs,Docker ,Hadoop。我们当前是租用IDC机房自建私有云,正在往“公私混合云”方向发展。
在雪球上,用户可以获取沪深港美2w+股票的新闻信息,股价变化情况,也可以获取债券,期货,基金,比特币,信托,理财,私募等等理财产品的各类信息,也可以关注雪球用户建立的百万组合,订阅它们的实时调仓信息,还可以关注雪球大V。雪球当前有百万日活跃用户,每天有4亿的API调用。App Store 财务免费榜第 18 名。历史上曾排到财务第二,总免费榜第 19。
二. 雪球当前总体架构
作为一个典型的移动互联网创业公司,雪球的总体架构也是非常典型的设计:
最上层是三个端:web端,android端和iOS端。流量比例大约为 2:4:4 。web3.0 的交易功能,在 web 端并不提供。
接入层以及下面的几个层,都在我们的自建机房内部。雪球当前只部署了一个机房,还属于单机房时代。正在进行“私有云+公有云混合部署”方案推进过程中。
我们当前使用 nodejs 作为 web 端模板引擎。nodejs 模块与android 和 ios 的 app 模块一起属于大前端团队负责。
再往下是位于 nginx 后面的 api 模块。跟 linkedin 的 leo 和微博的 v4 一样,雪球也有一个遗留的大一统系统,名字就叫 snowball 。最初,所有的逻辑都在 snowball 中实现的。后来慢慢的拆出去了很多 rpc 服务,再后来慢慢的拆出去了一些 http api 做成了独立业务,但即便如此,snowball 仍然是雪球系统中最大的一个部署单元。
在需要性能的地方,我们使用 netty 搭建了一些独立的接口,比如 quoto server,是用来提供开盘期间每秒一次的股价查询服务,单机 qps 5w+,这个一会再细说;而 IM 服务,起初设计里是用来提供聊天服务,而现在,它最大的用途是提供一个可靠的 push 通道,提供 5w/s 的消息下发容量,这个也一会再细说。
雪球的服务化拆分及治理采用 twitter 开源的 finagle rpc 框架,并在上面进行了一些二次开发和定制。定制的功能主要集中在 access log 增强,和 fail fast,fail over 策略及降级开关等。 finagle 的实现比较复杂,debug 和二次开发的门槛较高,团队内部对此也进行了一些讨论。
雪球的业务比较复杂,在服务层中,大致可以分为几类:第一类是web1.0,2.0 及基础服务,我们称为社区,包括用户,帖子,新闻,股价,搜索等等,类比对象就是新浪财经门户+微博;第二类是组合及推荐,主要提供股票投资策略的展示和建议,类比对象是美国的motif;第三类是通道,类似股市中的“支付宝”,接入多家券商,提供瞬间开户,一键下单等等各种方便操作的功能。
雪球的业务实现中,包含很多异步计算逻辑,比如搜索建索引,比如股票涨跌停发通知,比如组合收益计算等等,为此,我们设计了一个独立的 Thread/Task 模块,方便管理所有的后台计算任务。但随着这些 task 越来越多,逻辑差异越来越大,一个统一的模块并不是总是最佳的方案,所以,我们又把它拆成了两大类:流式的,和批量式的。
雪球的推荐体系包括组合推荐“买什么”和个性化推荐。我们最近正在重新梳理我们的大数据体系,这个感兴趣的话可以单聊。
最下面是基础设施层。雪球基础设施层包括:redis,mysql,mq,zk,hdfs,以及容器 docker。
线上服务之外,我们的开发及后台设施也很典型:gitlab开发,jenkins打包,zabbix 监控系统向 openfalcon 迁移,redimine向confluence迁移,jira,以及内部开发的 skiing 后台管理系统。
** 三. 雪球架构优化历程**
首先描述一下标题中的“股市动荡”定语修饰词吧:
上证指数从年初的3000点半年时间涨到了5000多,6月12号达到最高点5200点,然后就急转直下,最大单日跌幅 8.48%,一路跌回4000点以下。最近一周都在3900多徘徊。
3月最后一周,A股开户 166万户,超过历史最高纪录 2007年5月第二周165万户。
4月份,证监会宣布A股支持单用户开设多账户。
6月底,证金公司代表国家队入场救市。
7月份,证监会宣布严打场外配资。
中国好声音广告第一晚,带来超过平时峰值200倍的注册量
挑战:小 VS 大:
小:小公司的体量,团队小,机器规模小
大:堪比大公司的业务线数量,业务复杂度,瞬间峰值冲击
雪球的业务线 = 1个新浪财经 + 1 个微博 + 1 个 motif + 1 个大智慧/同花顺。由于基数小,API调用瞬间峰值大约为平时峰值的 30+ 倍。
挑战:快速增长,移动互联网 + 金融,风口,A股大盘剧烈波动。
首先,在app端,在我们核心业务从 web2.0 sns 向 3.0 移动交易闭环进化的过程中,我们开发了一个自己的 hybrid 框架:本地原生框架,加离线 h5 页面,以此来支撑我们的快速业务迭代。当前,雪球前端可以做到 2 周一个版本,且同时并行推进 3 个版本:一个在 app store 等待审核上线,一个在内测或公测,一个在开发。我们的前端架构师孟祥宇在今年的 wot 上有一个关于这方面的详细分享,有兴趣的可以稍后再深入了解。
雪球App实践—构建灵活、可靠的Hybrid框架 http://wot.51cto.com/2015mobile/ http://down.51cto.com/data/2080769
另外,为了保障服务的可用性,我们做了一系列的“端到端服务质量监控”。感兴趣的可以搜索我今年4月份在环信SM meetup上做的分享《移动时代端到端的稳定性保障》。其中在 app 端,我们采用了一种代价最小的数据传输方案:对用户的网络流量,电池等额外消耗几乎为0
每个请求里带上前一个请求的结果
succ or fail : 1 char
失败原因:0 - 1 char
请求接口编号: 1 char
请求耗时:2 - 3 char
其它:网络制式,etc
炒股的人大多都会盯盘:即在开盘期间,开着一个web页面或者app,实时的看股价的上下跳动。说到“实时”,美股港股当前都是流式的数据推送,但国内的A股,基本上都是每隔一段时间给出一份系统中所有股票现价的一个快照。这个时间间隔,理论上是3秒,实际上一般都在5秒左右。 交了钱签了合同,雪球作为合作方就可以从交易所下属的数据公司那里拿到数据了,然后提供给自己的用户使用。
刚才介绍总体架构图的时候有提到 quote server ,说到这是需要性能的地方。
业务场景是这样的,雪球上个人主页,开盘期间,每秒轮询一次当前用户关注的股票价格变动情况。在内部,所有的组合收益计算,每隔一段时间需要获取一下当前所有股票的实时价格。起初同时在线用户不多,这个接口就是一个部署在 snowball 中的普通接口,股价信息被实时写入 redis ,读取的时候就从 redis 中读。后来,A股大涨,snowball 抗不住了。于是我们就做了一个典型的优化:独立 server + 本地内存存储。开盘期间每次数据更新后,数据接收组件主动去更新 quote server 内存中的数据。 后续进一步优化方案是将这个接口以及相关的处理逻辑都迁移到公有云上去。
对于那些不盯盘的人,最实用的功能就是股价提醒了。在雪球上,你除了可以关注用户,还可以关注股票。如果你关注的某只股票涨了或跌了,我们都可以非常及时的通知你。雪球上热门股票拥有超过 50w 粉丝(招商银行,苏宁云商)粉丝可以设置:当这支股票涨幅或跌幅超过 x%(默认7%)时提醒我。曾经连续3天,每天超过1000股跌停,证监会开了一个会,于是接下来2天超过1000股涨停
原来做法:
股票涨(跌)x%,扫一遍粉丝列表,过滤出所有符合条件的粉丝,推送消息
新做法:
预先建立索引,开盘期间载入内存
1%:uid1,uid2
2%:uid3,uid4,uid5
3%:uid6
问题:有时候嫌太及时了:频繁跌停,打开跌停,再跌停,再打开。。。的时候
内部线上记录:
4台机器。
单条消息延时 99% 小于 30秒。
下一步优化目标:99% 小于 10 秒
IM 系统最初的设计目标是为雪球上的用户提供一个聊天的功能:
送达率第一
雪球IM:Netty + 自定义网络协议
Akka : 每个在线client一个actor
推模式:client 在线情况下使用推模式
多端同步:单账号多端可登录,并保持各种状态同步
移动互联网时代,除了微信qq以外的所有IM,都转型成了推送通道,核心指标变成了瞬间峰值性能。原有架构很多地方都不太合适了。
优化:
分配更多资源:推送账号actor池
精简业务逻辑:重复消息只存id,实时提醒内容不推历史设备,不更新非活跃设备的session列表等等
本地缓存:拉黑等无法精简的业务逻辑迁移到本地缓存
优化代码:异步加密存储,去除不合理的 akka 使用
akka这个解释一下:akka 有一个自己的 log adapter,内部使用一个 actor 来处理所有的 log event stream 。当瞬间峰值到来的时候,这个 event stream 一下子就堵了上百万条 log ,导致 gc 颠簸非常严重。最后的解决办法是,绕过 akka 的 log adapter,直接使用 logback 的 appender
线上记录:5w/s (主动限速)的推送持续 3 分钟,p99 性能指标无明显变化
7月10号我们在中国好声音上做了3期广告。在广告播出之前,我们针对广告可能带来的对系统的冲击进行了压力测试,主要是新用户注册模块,当时预估广告播出期间2小时新注册100万
压测发现 DB 成为瓶颈:
昵称检测 cache miss > 40%
昵称禁用词 where like 模糊查询
手机号是否注册 cache miss > 80%
注册新用户:5 insert
优化:
redis store:昵称,手机号
本地存储:昵称禁用词
业务流程优化:DB insert 操作同步改异步
下一步优化计划:
将 sns 系统中所有的上行操作都改成类似的异步模式
接口调用时中只更新缓存,而且主动设置5分钟过期,然后写一个消息到 mq 队列,队列处理程序拿到消息再做其它耗时操作。
为了支持失败重试,需要将主要的资源操作步骤都做成幂等。
前置模块HA:
合作方合规要求:业务单元部署到合作方内网,用户的敏感数据不允许离开进程内存
业务本身要求:业务单元本身为有状态服务,业务单元高可用
解决方案:
使用 Hazelcast In-Memory Data Grid 的 replication map 在多个 jvm 实例之间做数据同步。
java 启动参数加上 -XX:+DisableAttachMechanism -XX:-UsePerfData,禁止 jstack,jmap 等等 jdk 工具连接
关于前置模块,其实还有很多很奇葩的故事,鉴于时间关系,这里就不展开讲了。以后有机会可以当笑话给大家讲。
组合净值计算性能优化:
一支股票可能在超过20万个组合里(南车北车中车,暴风科技)
离线计算,存储计算后的结果
股价3秒变一次,涉及到这支股票的所有组合理论上也需要每 3 秒重新计算一次
大家可能会问,为什么不用户请求时,实时计算呢?这是因为“组合净值”中还包括分红送配,分股,送股,拆股,合股,现金,红利等等,业务太过复杂,开发初期经常需要调整计算逻辑,所以就设计成后台离线计算模式了。当前正在改造,将分红送配逻辑做成离线计算,股价组成的净值实时计算。接口请求是,将实时计算部分和离线计算部分合并成最终结果。
实际上,我们的计算逻辑是比较低效的:循环遍历所有的组合,对每个组合,获取所有的价值数据,然后计算。完成一遍循环后,立即开始下一轮循环。
优化:
分级:活跃用户的活跃组合,其它组合。
批量:拉取当前所有股票的现价到 JVM 内存里,这一轮的所有组合计算都用这一份股价快照。
关于这个话题的更详细内容,感兴趣的可以参考雪球组合业务总监张岩枫在今年的 arch summit 深圳大会上的分享:构建高可用的雪球投资组合系统技术实践 http://sz2015.archsummit.com/speakers/201825
最后,我们还做了一些通用的架构和性能优化,包括jdk升级到8,开发了一个基于 zookeeper 的 config center 和开关降级系统
四. 聊聊关于架构优化的一些总结和感想
在各种场合经常听说的架构优化,一般都是优化某一个具体的业务模块,将性能优化到极致。而在雪球,我们做的架构优化更多的是从问题出发,解决实际问题,解决到可以接受的程度即可。可能大家看起来会觉得很凌乱,而且每个事情单独拎出来好像都不是什么大事。
我们在对一个大服务做架构优化时,一般是往深入的本质进行挖掘;当我们面对一堆架构各异的小服务时,“架构优化”的含义其实是有一些不一样的。大部分时候,我们并不需要(也没有办法)深入到小服务的最底层进行优化,而是去掉或者优化原来明显不合理的地方就可以了。
在快速迭代的创业公司,我们可能不会针对某一个服务做很完善的架构设计和代码实现,当出现各种问题时,也不会去追求极致的优化,而是以解决瓶颈问题为先。
即使我们经历过一回将 snowball 拆分服务化的过程,但当我们重新上一个新的业务时,我们依然选择将它做成一个大一统的服务。只是这一次,我们会提前定义好每个模块的 service 接口,为以后可能的服务化铺好路。
在创业公司里,重写是不能接受的;大的重构,从时间和人力投入上看,一般也是无法承担的。而“裱糊匠”式做法,哪里有性能问题就加机器,加缓存,加数据库,有可用性问题就加重试,加log,出故障就加流程,加测试,这也不是雪球团队工作方式。我们一般都采用最小改动的方式,即,准确定义问题,定位问题根源,找到问题本质,制定最佳方案,以最小的改动代价,将问题解决到可接受的范围内。
我们现在正在所有的地方强推3个数据指标:qps,p99,error rate。每个技术人员对自己负责的服务,一定要有最基本的数据指标意识。数字,是发现问题,定位根源,找到本质的最重要的依赖条件。没有之一。
我们的原则:保持技术栈的一致性和简单性,有节制的尝试新技术,保持所有线上服务依赖的技术可控,简单来说,能 hold 住。
能用cache的地方绝不用db,能异步的地方,绝不同步。俗称的:吃一堑,长一智。
特事特办:业务在发展,需求在变化,实现方式也需要跟着变化。简单的来说:遗留系统的优化,最佳方案就是砍需求,呵呵。
㈨ 如何使用 Python 抓取雪球网页
#start coding
首先要知道自己在爬什么~楼主说找到HTML的代码云云,思路其实是错误的。因为我们想要的内容不在原始的html里面。但是肯定在浏览器和服务器之间的通信里,我们只要找到这部分数据就好。
#我用的是Firefox的FireBug
选择网络(Chrome中应该是Network),点击调仓历史记录
可以看到浏览器和服务器之间进行了一次通信。我们截获了一个网址。打开看看。可以看到浏览器和服务器之间进行了一次通信。我们截获了一个网址。打开看看。
看上去像是一堆乱码,但是细心的话就会发现……
也就是说我们要的数据都在这里了,所以只要先获取这个页面的内容然后在提取数据就好了~
#python3项目,python2中请使用urllib和urllib2
import urllib.request
url = '?cube_symbol=ZH010389&count=20&page=1'
req = urllib.request.Request(url,headers=headers)
html = urllib.request.urlopen(req).read().decode('utf-8')
print(html)
运行一下~
报错了~报错没关系,兵来将挡水来土掩~
403禁止访问…应该是headers的问题…什么是headers呢…403禁止访问…应该是headers的问题…什么是headers呢…
你现在用python去访问网页,网页得到的请求就是你是python程序,但是网页并不想让程序看到自己,因为他是给人看的,资源都被程序占了算什么,所以我们要让python伪装成浏览器。
依然是用Firebug查看headers信息。
然后我们完善代码在访问过程中添加headers~然后我们完善代码在访问过程中添加headers~
import urllib.request
headers = {'X-Requested-With': 'XMLHttpRequest',
'Referer': '',
'User-Agent': 'Mozilla/5.0 (Windows NT 6.2; WOW64; rv:38.0) Gecko/20100101 Firefox/38.0',
'Host': 'xueqiu.com',
#'Connection':'keep-alive',
#'Accept':'*/*',
'cookie':'s=iabht2os.1dgjn9z; xq_a_token=; xq_r_token=; __utma=1.2130135756.1433017807.1433017807.1433017807.1;'
'__utmc=1; __utmz=1.1433017807.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); Hm_lvt_=1433017809; Hm_lpvt_=1433017809'}
url = '?cube_symbol=ZH010389&count=20&page=1'
req = urllib.request.Request(url,headers=headers)
html = urllib.request.urlopen(req).read().decode('utf-8')
print(html)
这次得到想要的结果了~
我们回过头再去看headers会发现,其实有些我并没有写进去,你也可以自己尝试把headers中的某一行注释掉运行。但是每个站是不一样的,你把所有的都填上去是一定能运行成功的,但是可能其中某一些不是必需的。
比如我们这里只要有User-Agent(缺少报错403)和cookie(缺少报错400)。
好~我们现在拿到了想要的数据,但是看上去太复杂了,一点都不友好。现在我们来解析一下这个网页。其实这个网页是json格式的数据包。
然后我们来观察这个数据的解析。然后我们来观察这个数据的解析。
#你可以直接点击Firebug中的JSON来看,也可以复制到Notepad++中使用json viewer插件查看。
大概是这个样子的……大概是这个样子的……
有了json的构成结构我们就可以来解析它了…
我直接拿Python Shell调试,一会儿完善代码
没什么问题~一切看起来很完美的样子~这一步其实没什么难度,只要你能看懂上一步里我们分析的json数据的组成结构,然后一层一层地向下解析数据就可以了。
完善代码。
import urllib.request
import json
headers = {#'X-Requested-With': 'XMLHttpRequest',
#'Referer': '',
'User-Agent': 'Mozilla/5.0 (Windows NT 6.2; WOW64; rv:38.0) Gecko/20100101 Firefox/38.0',
#'Host': 'xueqiu.com',
#'Connection':'keep-alive',
#'Accept':'*/*',
'cookie':'s=iabht2os.1dgjn9z; xq_a_token=; xq_r_token=; __utma=1.2130135756.1433017807.1433017807.1433017807.1;'
'__utmc=1; __utmz=1.1433017807.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); Hm_lvt_=1433017809; Hm_lpvt_=1433017809'}
url = '?cube_symbol=ZH010389&count=20&page=1'
req = urllib.request.Request(url,headers=headers)
html = urllib.request.urlopen(req).read().decode('utf-8')
#print(html)
data = json.loads(html)
print('股票名称',end=':')
print(data['list'][0]['rebalancing_histories'][0]['stock_name'],end=' 持仓变化')
print(data['list'][0]['rebalancing_histories'][0]['prev_weight'],end='-->')
print(data['list'][0]['rebalancing_histories'][0]['target_weight'])
print('股票名称',end=':')
print(data['list'][0]['rebalancing_histories'][1]['stock_name'],end=' 持仓变化')
print(data['list'][0]['rebalancing_histories'][1]['prev_weight'],end='-->')
print(data['list'][0]['rebalancing_histories'][1]['target_weight'])
运行程序~
好嘞!搞定收工!
当然也还不能收工……只是我不干了而已……
To-dos:
可以看到程序是面向过程的…重复代码很多,可以通过定义类或方法实现调用
大概……大概得写点注释……不过这么简单直接无脑面向过程的代码真的需要注释吗
如果是想在他持仓变化时收到提醒,需要爬虫定时爬取页面数据与之前数据进行比较
如果你更细心的话会发现最初的json网址的构成是这样的…cube_symbol='#此处可添加任意组合的号码例如ZH010389'&count=‘#此处数字是一次获取的交易变化数量,也就是说你一次性拿到了20次的交易,你点开之前交易记录的时候并不会重新请求数据而是读取了本地现有的数据此处数据可以任意修改哦~很神奇的试一试吧~20’&page=‘和前面联系起来,前面是一次性获取20条记录,这边便是页码,通过对page数的控制利用循环可以输出所有交易过程,当然,40一页和20两页的效果显然是一样的,看你怎么玩儿了~1’
如果你有耐心看完上面那一大段话的话想必你可以有更多的想法。让别人来指导我们的思路是好的,可是投资的机会稍瞬即逝,跟在别人后面是没有前途的,我们要学习。大数据的时代为什么不试试爬更多人的更多投资记录呢?比如在雪球首页爬取首页推荐的组合,然后自动爬取这些组合所做的所有操作~这样你是不是就有了很厚的一本交易目录,结合过去的股市数据(这些能不能想办法自动获取呢?),你可以自己尝试分析别人作出投资决定的原因(是不是可以把数据自动写入一个excel?提示:xlwt3)…最终指导自己的投资。大数据学习,想想都炫酷。可惜我不炒股…
大概就酱紫~希望有帮助~
写这么多是因为我自己在学爬虫…一周了…看到实践的机会就来试一下…所以是边调BUG边写答案~
大概就写这么多吧…后面的To-dos哪天我突然感兴趣了会试着写一下或者过来补充的…
看到这个答案的…前辈还希望多多指教;看到这个答案的新手…欢迎交流:P
㈩ 怎样从互联网上采集股票数据
你可以从网上下载免费的股票软件,如“大智慧”,“同花顺”等。很方便,什么数据都有。