1. 大数据时代应该如何投资股票
给一篇关于【如何使用大数据进行A股行业投资】的教程给你参考一下~
好的投资,首先是选好行业
红杉资本曾经有一条著名的投资经验,大意是:好的投资,首先是选好赛道,其次是赛道上的选手。对于每天活跃于资本市场上的投资者而言,赛道所指的正是你正在投资、或者将要投资的那家公司它所在的行业,更直接的说,你投资于什么行业,投资于这个行业的哪家公司,决定了你最终能获得什么样的收益表现。
那么,红杉资本的这条投资经验是否适用于A股市场,并给我们带来可观的投资收益呢?本文试图通过量化分析和交易回测来验证这一投资模式是否真正有效,所采用的数据取自于聚宽数据出品的JQData本地量化金融数据,通过梳理出自2010年以来A股市场上不同行业的发展情况,进一步构建出一个优质行业龙头组合,观察其从2015年股灾至今的收益表现。最终发现,这样一个优质行业的龙头组合,从股灾至今大幅跑赢了上证指数和沪深300指数高达30%的以上的收益率,可以说是超乎预期的。以下是具体分析过程。
2010 ~ 2017 沪深A股各行业量化分析
在开始各行业的量化分析之前,我们需要先弄清楚两个问题:
第一,A股市场上都有哪些行业;
第二,各行业自2010年以来的营收、净利润增速表现如何?
第一个问题:
很好回答,我们使用JQData提供的获取行业成分股的方法,输入get_instries(name='sw_l1')
得到申万一级行业分类结果如下:它们分别是:【农林牧渔、采掘、化工、钢铁、有色金属、电子、家用电器、食品饮料、纺织服装、轻工制造、医药生物、公用事业、交通运输、房地产、商业贸易、休闲服务、综合、建筑材料、建筑装饰、电器设备、国防军工、计算机、传媒、通信、银行、非银金融、汽车、机械设备】共计28个行业。
第二个问题:
要知道各行业自2010年以来的营收、净利润增速表现,我们首先需要知道各行业在各个年度都有哪些成分股,然后加总该行业在该年度各成分股的总营收和净利润,就能得到整个行业在该年度的总营收和总利润了。这部分数据JQData也为我们提供了方便的接口:通过调用get_instry_stocks(instry_code=‘行业编码’, date=‘统计日期’),获取申万一级行业指定日期下的行业成分股列表,然后再调用查询财务的数据接口:get_fundamentals(query_object=‘query_object’, statDate=year)来获取各个成分股在对应年度的总营收和净利润,最后通过加总得到整个行业的总营收和总利润。这里为了避免非经常性损益的影响,我们对净利润指标最终选取的扣除非经常性损益的净利润数据。
我们已经获取到想要的行业数据了。接下来,我们需要进一步分析,这些行业都有什么样的增长特征。
我们发现,在28个申万一级行业中,有18个行业自2010年以来在总营收方面保持了持续稳定的增长。它们分别是:【农林牧渔,电子,食品饮料,纺织服装,轻工制造,医药生物,公用事业,交通运输,房地产,休闲服务,建筑装饰,电气设备,国防军工,计算机,传媒,通信,银行,汽车】;其他行业在该时间范围内出现了不同程度的负增长。
那么,自2010年以来净利润保持持续增长的行业又会是哪些呢?结果是只有5个行业保持了基业长青,他们分别是医药生物,建筑装饰,电气设备,银行和汽车。(注:由于申万行业在2014年发生过一次大的调整,建筑装饰,电气设备,银行和汽车实际从2014年才开始统计。)
从上面的分析结果可以看到,真正能够保持持续稳定增长的行业并不多,如果以扣非净利润为标准,那么只有医药生物,建筑装饰,电气设备,银行和汽车这五个行业可以称之为优质行业,实际投资中,就可以只从这几个行业中去投资。这样做的目的是,一方面,能够从行业大格局层面避免行业下行的风险,绕开一个可能出现负增长的的行业,从而降低投资的风险;另一方面,也大大缩短了我们的投资范围,让投资者能够专注于从真正好的行业去挑选公司进行投资。
选好行业之后,下面进入选公司环节。我们知道,即便是一个好的行业也仍然存在表现不好的公司,那么什么是好的公司呢,本文试图从营业收入规模和利润规模和来考察以上五个基业长青的行业,从它们中去筛选公司作为投资标的。
1、按营业收入规模构建的行业龙头投资组合
首先,我们按照营业收入规模,筛选出以上5个行业【医药生物,建筑装饰,电气设备,银行和汽车】从2010年至今的行业龙头如下表所示:
通过以上行业分析和投资组合的历史回测可以看到:
先选行业,再选公司,即使是从2015年股灾期间开始投资,至2018年5月1号,仍然能够获得相对理想的收益,可以说,红杉资本的赛道投资法则对于一般投资者还是比较靠谱的。
在构建行业龙头投资组合时,净利润指标显著优于营业收入指标,获得的投资收益能够更大的跑赢全市场收益率
市场是不断波动的,如果一个投资者从股灾期间开始投资,那么即使他买入了上述优质行业的龙头组合,在近3年也只能获得12%左右的累计收益;而如果从2016年5月3日开始投资,那么至2018年5月2日,2年时间就能获得超过50%以上的收益了。所以,在投资过程中选择时机也非常重要~
2. “大数据”主要涉及哪些领域相关股票分别有哪些
近期,大数据概念正在风靡全球,从华尔街到国内资本市场,大数据概念股持续走强。5月17日,可视化数据分析软件供应商Tableau 及大数据营销公司Marketo一登陆美股市场,便引来疯狂的买盘。截至当日收盘,Marketo的股价飙升77.69%,Tableau的股价也暴涨63.71%。美股对“大数据”概念的疯狂热炒很快传播到了A股市场。今年以来至今,大数据概念股逆市上扬,累计涨幅达47.8%。根据细分行业分类,“大数据”主要涉及七大领域,包括数据处理和分析环节以及综合处理、语音识别、视频识别、商业智能软件、数据中心建设与维护、IT咨询和方案实施、信息安全等。
相关股票
“大数据”涉及的七大领域之一数据处理、分析环节和综合处理,与其相关的国内A股上市公司拓尔思和美亚柏科,近期表现抢眼。
语音识别作为“大数据”涉及的七大领域之一,近期,其相关的科大讯飞、大华股份(002236)、华平股份(300074)、中威电子(300270)和国腾电子(300101)等5只个股受到市场关注。
目前,国内A股市场中涉及视频识别行业的上市公司主要有5家,具体为:海康威视(002415)、大华股份、华平股份、中威电子、国腾电子。这5只个股今年以来至今均有不错表现,大华股份(74.34%)、华平股份(60.34%)、国腾电子(25.49%)、海康威视(22.47%)、中威电子(15.60%)。
目前,A股市场中涉及商业智能软件生产的上市公司主要有:久其软件(002279)、用友软件(600588)、东方国信(300166)。
对于国内企业而言,在大型设备与基础软件方面尚无法与全球IT巨头匹敌。不过,在应用软件、IT服务的多个细分领域,国内企业已积累了客户基础与行业、项目经验,有望借大数据的兴起而获得增长助力。
值得一提的是,汉得信息是我国本土领先的IT咨询企业,多年来致力于为企业提供高端ERP实施服务。
三分技术,七分数据,得数据者得天下。随着未来数据的规模剧增,数据中心的建设与维护是必不可少的。目前A股中涉及数据中心建设与维护的公司包括天玑科技(300245)、银信科技(300231)和荣之联(002642)。
目前A股涉及信息安全领域的个股包括:卫士通(002268)、同有科技(300302)、美亚柏科等等。
3. 如何用大数据炒股
我们如今生活在一个数据爆炸的世界里。网络每天响应超过60亿次的搜索请求,日处理数据超过100PB,相当于6000多座中国国家图书馆的书籍信息量总和。新浪微博每天都会发布上亿条微博。在荒无人烟的郊外,暗藏着无数大公司的信息存储中心,24小时夜以继日地运转着。
克托·迈尔-舍恩伯格在《大数据时代》一书中认为,大数据的核心就是预测,即只要数据丰富到一定程度,就可预测事情发生的可能性。例如,“从一个人乱穿马路时行进的轨迹和速度来看他能及时穿过马路的可能性”,或者通过一个人穿过马路的速度,预测车子何时应该减速从而让他及时穿过马路。
那么,如果把这种预测能力应用在股票投资上,又会如何?
目前,美国已经有许多对冲基金采用大数据技术进行投资,并且收获甚丰。中国的中证广发网络百发100指数基金(下称百发100),上线四个多月以来已上涨68%。
和传统量化投资类似,大数据投资也是依靠模型,但模型里的数据变量几何倍地增加了,在原有的金融结构化数据基础上,增加了社交言论、地理信息、卫星监测等非结构化数据,并且将这些非结构化数据进行量化,从而让模型可以吸收。
由于大数据模型对成本要求极高,业内人士认为,大数据将成为共享平台化的服务,数据和技术相当于食材和锅,基金经理和分析师可以通过平台制作自己的策略。
量化非结构数据
不要小看大数据的本领,正是这项刚刚兴起的技术已经创造了无数“未卜先知”的奇迹。
2014年,网络用大数据技术预测命中了全国18卷中12卷高考作文题目,被网友称为“神预测”。网络公司人士表示,在这个大数据池中,包含互联网积累的用户数据、历年的命题数据以及教育机构对出题方向作出的判断。
在2014年巴西世界杯比赛中,Google亦通过大数据技术成功预测了16强和8强名单。
从当年英格兰报社的信鸽、费城股票交易所的信号灯到报纸电话,再到如今的互联网、云计算、大数据,前沿技术迅速在投资领域落地。在股票策略中,大数据日益崭露头角。
做股票投资策略,需要的大数据可以分为结构化数据和非结构化数据。结构化数据,简单说就是“一堆数字”,通常包括传统量化分析中常用的CPI、PMI、市值、交易量等专业信息;非结构化数据就是社交文字、地理位置、用户行为等“还没有进行量化的信息”。
量化非结构化就是用深度模型替代简单线性模型的过程,其中所涉及的技术包括自然语言处理、语音识别、图像识别等。
金融大数据平台-通联数据CEO王政表示,通联数据采用的非结构化数据可以分为三类:第一类和人相关,包括社交言论、消费、去过的地点等;第二类与物相关,如通过正在行驶的船只和货车判断物联网情况;第三类则是卫星监测的环境信息,包括汽车流、港口装载量、新的建筑开工等情况。
卫星监测信息在美国已被投入使用,2014年Google斥资5亿美元收购了卫星公司Skybox,从而可以获得实施卫星监测信息。
结构化和非结构化数据也常常相互转化。“结构化和非结构化数据可以形象理解成把所有数据装在一个篮子里,根据应用策略不同相互转化。例如,在搜索频率调查中,用户搜索就是结构化数据;在金融策略分析中,用户搜索就是非结构化数据。”网络公司人士表示。
华尔街拿着丰厚薪水的分析师们还不知道,自己的雇主已经将大量资本投向了取代自己的机器。
2014年11月23日,高盛向Kensho公司投资1500万美元,以支持该公司的大数据平台建设。该平台很像iPhone里的Siri,可以快速整合海量数据进行分析,并且回答投资者提出的各种金融问题,例如“下月有飓风,将对美国建材板块造成什么影响?”
在Kensho处理的信息中,有80%是“非结构化”数据,例如政策文件、自然事件、地理环境、科技创新等。这类信息通常是电脑和模型难以消化的。因此,Kensho的CEO Daniel Nadler认为,华尔街过去是基于20%的信息做出100%的决策。
既然说到高盛,顺便提一下,这家华尔街老牌投行如今对大数据可谓青睐有加。除了Kensho,高盛还和Fortress信贷集团在两年前投资了8000万美元给小额融资平台On Deck Capital。这家公司的核心竞争力也是大数据,它利用大数据对中小企业进行分析,从而选出值得投资的企业并以很快的速度为之提供短期贷款。
捕捉市场情绪
上述诸多非结构化数据,归根结底是为了获得一个信息:市场情绪。
在采访中,2013年诺贝尔经济学奖得主罗伯特•席勒的观点被无数采访对象引述。可以说,大数据策略投资的创业者们无一不是席勒的信奉者。
席勒于上世纪80年代设计的投资模型至今仍被业内称道。在他的模型中,主要参考三个变量:投资项目计划的现金流、公司资本的估算成本、股票市场对投资的反应(市场情绪)。他认为,市场本身带有主观判断因素,投资者情绪会影响投资行为,而投资行为直接影响资产价格。
然而,在大数据技术诞生之前,市场情绪始终无法进行量化。
回顾人类股票投资发展史,其实就是将影响股价的因子不断量化的过程。
上世纪70年代以前,股票投资是一种定性的分析,没有数据应用,而是一门主观的艺术。随着电脑的普及,很多人开始研究驱动股价变化的规律,把传统基本面研究方法用模型代替,市盈率、市净率的概念诞生,量化投资由此兴起。
量化投资技术的兴起也带动了一批华尔街大鳄的诞生。例如,巴克莱全球投资者(BGI)在上世纪70年代就以其超越同行的电脑模型成为全球最大的基金管理公司;进入80年代,另一家基金公司文艺复兴(Renaissance)年均回报率在扣除管理费和投资收益分成等费用后仍高达34%,堪称当时最佳的对冲基金,之后十多年该基金资产亦十分稳定。
“从主观判断到量化投资,是从艺术转为科学的过程。”王政表示,上世纪70年代以前一个基本面研究员只能关注20只到50只股票,覆盖面很有限。有了量化模型就可以覆盖所有股票,这就是一个大的飞跃。此外,随着计算机处理能力的发展,信息的用量也有一个飞跃变化。过去看三个指标就够了,现在看的指标越来越多,做出的预测越来越准确。
随着21世纪的到来,量化投资又遇到了新的瓶颈,就是同质化竞争。各家机构的量化模型越来越趋同,导致投资结果同涨同跌。“能否在看到报表数据之前,用更大的数据寻找规律?”这是大数据策略创业者们试图解决的问题。
于是,量化投资的多米诺骨牌终于触碰到了席勒理论的第三层变量——市场情绪。
计算机通过分析新闻、研究报告、社交信息、搜索行为等,借助自然语言处理方法,提取有用的信息;而借助机器学习智能分析,过去量化投资只能覆盖几十个策略,大数据投资则可以覆盖成千上万个策略。
基于互联网搜索数据和社交行为的经济预测研究,已逐渐成为一个新的学术热点,并在经济、社会以及健康等领域的研究中取得了一定成果。在资本市场应用上,研究发现搜索数据可有效预测未来股市活跃度(以交易量指标衡量)及股价走势的变化。
海外就有学术研究指出,公司的名称或者相关关键词的搜索量,与该公司的股票交易量正相关。德国科学家Tobias Preis就进行了如此研究:Tobias利用谷歌搜索引擎和谷歌趋势(Google Trends),以美国标普500指数的500只股票为其样本,以2004年至2010年为观察区间,发现谷歌趋势数据的公司名称搜索量和对应股票的交易量,在每周一次的时间尺度上有高度关联性。也就是说,当某个公司名称在谷歌的搜索量活动增加时,无论股票的价格是上涨或者下跌,股票成交量与搜索量增加;反之亦然,搜索量下降,股票成交量下降。以标普500指数的样本股为基础,依据上述策略构建的模拟投资组合在六年的时间内获得了高达329%的累计收益。
在美国市场上,还有多家私募对冲基金利用Twitter和Facebook的社交数据作为反映投资者情绪和市场趋势的因子,构建对冲投资策略。利用互联网大数据进行投资策略和工具的开发已经成为世界金融投资领域的新热点。
保罗·霍丁管理的对冲基金Derwent成立于2011年5月,注册在开曼群岛,初始规模约为4000万美元, 2013年投资收益高达23.77%。该基金的投资标的包括流动性较好的股票及股票指数产品。
通联数据董事长肖风在《投资革命》中写道,Derwent的投资策略是通过实时跟踪Twitter用户的情绪,以此感知市场参与者的“贪婪与恐惧”,从而判断市场涨跌来获利。
在Derwent的网页上可以看到这样一句话:“用实时的社交媒体解码暗藏的交易机会。”保罗·霍丁在基金宣传册中表示:“多年以来,投资者已经普遍接受一种观点,即恐惧和贪婪是金融市场的驱动力。但是以前人们没有技术或数据来对人类情感进行量化。这是第四维。Derwent就是要通过即时关注Twitter中的公众情绪,指导投资。”
另一家位于美国加州的对冲基金MarketPsych与汤普森·路透合作提供了分布在119个国家不低于18864项独立指数,比如每分钟更新的心情状态(包括乐观、忧郁、快乐、害怕、生气,甚至还包括创新、诉讼及冲突情况等),而这些指数都是通过分析Twitter的数据文本,作为股市投资的信号。
此类基金还在不断涌现。金融危机后,几个台湾年轻人在波士顿组建了一家名为FlyBerry的对冲基金,口号是“Modeling the World(把世界建模)”。它的投资理念全部依托大数据技术,通过监测市场舆论和行为,对投资做出秒速判断。
关于社交媒体信息的量化应用,在股票投资之外的领域也很常见:Twitter自己也十分注重信息的开发挖掘,它与DataSift和Gnip两家公司达成了一项出售数据访问权限的协议,销售人们的想法、情绪和沟通数据,从而作为顾客的反馈意见汇总后对商业营销活动的效果进行判断。从事类似工作的公司还有DMetics,它通过对人们的购物行为进行分析,寻找影响消费者最终选择的细微原因。
回到股票世界,利用社交媒体信息做投资的公司还有StockTwits。打开这家网站,首先映入眼帘的宣传语是“看看投资者和交易员此刻正如何讨论你的股票”。正如其名,这家网站相当于“股票界的Twitter”,主要面向分析师、媒体和投资者。它通过机器和人工相结合的手段,将关于股票和市场的信息整理为140字以内的短消息供用户参考。
此外,StockTwits还整合了社交功能,并作为插件可以嵌入Twitter、Facebook和LinkedIn等主要社交平台,让人们可以轻易分享投资信息。
另一家公司Market Prophit也很有趣。这家网站的宣传语是“从社交媒体噪音中提炼市场信号”。和StockTwits相比,Market Prophit更加注重大数据的应用。它采用了先进的语义分析法,可以将Twitter里的金融对话量化为“-1(极度看空)”到“1(极度看多)”之间的投资建议。网站还根据语义量化,每天公布前十名和后十名的股票热度榜单。网站还设计了“热度地图”功能,根据投资者情绪和意见,按照不同板块,将板块内的个股按照颜色深浅进行标注,谁涨谁跌一目了然。
中国原创大数据指数
尽管大数据策略投资在美国貌似炙手可热,但事实上,其应用尚仅限于中小型对冲基金和创业平台公司。大数据策略投资第一次被大规模应用,应归于中国的百发100。
网络金融中心相关负责人表示,与欧美等成熟资本市场主要由理性机构投资者构成相比,东亚尤其是中国的股票类证券投资市场仍以散户为主,因此市场受投资者情绪和宏观政策性因素影响很大。而个人投资者行为可以更多地反映在互联网用户行为大数据上,从而为有效地预测市场情绪和趋势提供了可能。这也就是中国国内公募基金在应用互联网大数据投资方面比海外市场并不落后、甚至领先的原因。
百发100指数由网络、中证指数公司、广发基金联合研发推出,于2014年7月8日正式对市场发布,实盘运行以来一路上涨,涨幅超过60%。跟踪该指数的指数基金规模上限为30亿份,2014年9月17日正式获批,10月20日发行时一度创下26小时疯卖18亿份的“神话”。
外界都知道百发100是依托大数据的指数基金,但其背后的细节鲜为人知。
百发100数据层面的分析分为两个层面,即数据工厂的数据归集和数据处理系统的数据分析。其中数据工厂负责大数据的收集分析,例如将来源于互联网的非结构化数据进行指标化、产品化等数据量化过程;数据处理系统,可以在数据工厂递交的大数据中寻找相互统计关联,提取有效信息,最终应用于策略投资。
“其实百发100是在传统量化投资技术上融合了基于互联网大数据的市场走势和投资情绪判断。”业内人士概括道。
和传统量化投资类似,百发100对样本股的甄选要考虑财务因子、基本面因子和动量因子,包括净资产收益率(ROE)、资产收益率(ROA)、每股收益增长率(EPS)、流动负债比率、企业价值倍数(EV/EBITDA)、净利润同比增长率、股权集中度、自由流通市值以及最近一个月的个股价格收益率和波动率等。
此外,市场走势和投资情绪是在传统量化策略基础上的创新产物,也是百发100的核心竞争力。接近网络的人士称,市场情绪因子对百发100基金起决定性作用。
网络金融中心相关负责人是罗伯特•席勒观点的支持者。他认为,投资者行为和情绪对资产价格、市场走势有着巨大的影响。因此“通过互联网用户行为大数据反映的投资市场情绪、宏观经济预期和走势,成为百发100指数模型引入大数据因子的重点”。
传统量化投资主要着眼点在于对专业化金融市场基本面和交易数据的应用。但在网络金融中心相关业务负责人看来,无论是来源于专业金融市场的结构化数据,还是来源于互联网的非结构化数据,都是可以利用的数据资源。因此,前文所述的市场情绪数据,包括来源于互联网的用户行为、搜索量、市场舆情、宏观基本面预期等等,都被网络“变废为宝”,从而通过互联网找到投资者参与特征,选出投资者关注度较高的股票。
“与同期沪深300指数的表现相较,百发100更能在股票市场振荡时期、行业轮动剧烈时期、基本面不明朗时期抓住市场热点、了解投资者情绪、抗击投资波动风险。”网络金融中心相关负责人表示。
百发100选取的100只样本股更换频率是一个月,调整时间为每月第三周的周五。
业内人士指出,百发100指数的月收益率与中证100、沪深300、中证500的相关性依次提升,说明其投资风格偏向中小盘。
但事实并非如此。从样本股的构成来说,以某一期样本股为例,样本股总市值6700亿元,占A股市值4.7%。样本股的构成上,中小板21只,创业板4只,其余75只样本股均为大盘股。由此可见,百发100还是偏向大盘为主、反映主流市场走势。
样本股每个月的改变比例都不同,最极端的时候曾经有60%进行了换仓。用大数据预测热点变化,市场热点往往更迭很快;但同时也要考虑交易成本。两方面考虑,网络最后测算认为一个月换一次仓位为最佳。
样本股对百发100而言是核心机密——据说“全世界只有基金经理和指数编制机构负责人两个人知道”——都是由机器决定后,基金经理分配给不同的交易员建仓买入。基金经理也没有改变样本股的权利。
展望未来,网络金融中心相关负责人踌躇满志,“百发100指数及基金的推出,只是我们的开端和尝试,未来将形成多样化、系列投资产品。”
除了百发100,目前市场上打着大数据旗帜的基金还有2014年9月推出的南方-新浪I100和I300指数基金。
南方-新浪I100和I300是由南方基金、新浪财经和深圳证券信息公司三方联合编制的。和百发100类似,也是按照财务因子和市场情绪因子进行模型打分,按照分值将前100和前300名股票构成样本股。推出至今,这两个指数基金分别上涨了10%左右。
正如百发100的市场情绪因子来自网络,南方-新浪I100和I300的市场情绪因子全部来自新浪平台。其中包括用户在新浪财经对行情的访问热度、对股票的搜索热度;用户在新浪财经对股票相关新闻的浏览热度;股票相关微博的多空分析数据等。
此外,阿里巴巴旗下的天弘基金也有意在大数据策略上做文章。据了解,天弘基金将和阿里巴巴合作,推出大数据基金产品,最早将于2015年初问世。
天弘基金机构产品部总经理刘燕曾对媒体表示,“在传统的调研上,大数据将贡献于基础资产的研究,而以往过度依赖线下研究报告。大数据将视野拓展至了线上的数据分析,给基金经理选股带来新的逻辑。”
在BAT三巨头中,腾讯其实是最早推出指数基金的。腾讯与中证指数公司、济安金信公司合作开发的“中证腾安价值100指数”早在2013年5月就发布了,号称是国内第一家由互联网媒体与专业机构编制发布的A股指数。不过,业内人士表示,有关指数并没有真正应用大数据技术。虽然腾讯旗下的微信是目前最热的社交平台,蕴藏了大量的社交数据,但腾讯未来怎么开发,目前还并不清晰。
大数据投资平台化
中欧商学院副教授陈威如在其《平台战略》一书中提到,21世纪将成为一道分水岭,人类商业行为将全面普及平台模式,大数据金融也不例外。
然而,由于大数据模型对成本要求极高,就好比不可能每家公司都搭建自己的云计算系统一样,让每家机构自己建设大数据模型,从数据来源和处理技术方面看都是不现实的。业内人士认为,大数据未来必将成为平台化的服务。
目前,阿里、网络等企业都表示下一步方向是平台化。
蚂蚁金服所致力搭建的平台,一方面包括招财宝一类的金融产品平台,另一方面包括云计算、大数据服务平台。蚂蚁金服人士说,“我们很清楚自己的优势不是金融,而是包括电商、云计算、大数据等技术。蚂蚁金服希望用这些技术搭建一个基础平台,把这些能力开放出去,供金融机构使用。”
网络亦是如此。接近网络的人士称,未来是否向平台化发展,目前还在讨论中,但可以确定的是,“网络不是金融机构,目的不是发产品,百发100的意义在于打造影响力,而非经济效益。”
当BAT还在摸索前行时,已有嗅觉灵敏者抢占了先机,那就是通联数据。
通联数据股份公司(DataYes)由曾任博时基金副董事长肖风带队创建、万向集团投资成立,总部位于上海,公司愿景是“让投资更容易,用金融服务云平台提升投资管理效率和投研能力”。该平台7月上线公测,目前已拥有130多家机构客户,逾万名个人投资者。
通联数据目前有四个主要平台,分别是通联智能投资研究平台、通联金融大数据服务平台、通联多资产投资管理平台和金融移动办公平台。
通联智能投资研究平台包括雅典娜-智能事件研究、策略研究、智能研报三款产品,可以对基于自然语言的智能事件进行策略分析,实时跟踪市场热点,捕捉市场情绪。可以说,和百发100类似,其核心技术在于将互联网非结构化数据的量化使用。
通联金融大数据服务平台更侧重于专业金融数据的分析整理。它可以提供公司基本面数据、国内外主要证券、期货交易所的行情数据、公司公告数据、公关经济、行业动态的结构化数据、金融新闻和舆情的非结构化数据等。
假如将上述两个平台比作“收割机”,通联多资产投资管理平台就是“厨房”。在这个“厨房”里,可以进行全球跨资产的投资组合管理方案、订单管理方案、资产证券化定价分析方案等。
通联数据可以按照主题热点或者自定义关键字进行分析,构建知识图谱,将相关的新闻和股票提取做成简洁的分析框架。例如用户对特斯拉感兴趣,就可以通过主题热点看到和特斯拉相关的公司,并判断这个概念是否值得投资。“过去这个搜集过程要花费几天时间,现在只需要几分钟就可以完成。”王政表示。
“通联数据就好比一家餐馆,我们把所有原料搜集来、清洗好、准备好,同时准备了一个锅,也就是大数据存储平台。研究员和基金经理像厨师一样,用原料、工具去‘烹制’自己的策略。”王政形容道。
大数据在平台上扮演的角色,就是寻找关联关系。人类总是习惯首先构建因果关系,继而去倒推和佐证。机器学习则不然,它可以在海量数据中查获超越人类想象的关联关系。正如维克托`迈尔-舍恩伯格在《大数据时代》中所提到的,社会需要放弃它对因果关系的渴求,而仅需关注相互关系。
例如,美国超市沃尔玛通过大数据分析,发现飓风用品和蛋挞摆在一起可以提高销量,并由此创造了颇大的经济效益。如果没有大数据技术,谁能将这毫无关联的两件商品联系在一起?
通联数据通过机器学习,也能找到传统量化策略无法发现的市场联系。其中包括各家公司之间的资本关系、产品关系、竞争关系、上下游关系,也包括人与人之间的关系,例如管理团队和其他公司有没有关联,是否牵扯合作等。
未来量化研究员是否将成为一个被淘汰的职业?目前研究员的主要工作就是收集整理数据,变成投资决策,而之后这个工作将更多由机器完成。
“当初医疗科技发展时,人们也认为医生会被淘汰,但其实并不会。同理,研究员也会一直存在,但他们会更注重深入分析和调研,初级的数据搜集可以交给机器完成。”王政表示。
但当未来大数据平台并广泛应用后,是否会迅速挤压套利空间?这也是一个问题。回答根据网上资料整理
4. 大数据时代散户如何做股票投资如题 谢谢了
这是沪市大盘走势图表可以看出大盘的长时间大底已构筑完成并且开始放量基于目前情况建议您逢低建仓做长线投资(持有)的准备以便做足行情 查看原帖>>
5. 大数据股票有哪些
大数据概念股 : 就主题投资而言,"大数据"概念2012年有望成为具有较强冲击力的新主题,大数据概念实际上是从海量数据有效利用的角度对云计算、物联网等概念的综合,更加准确地抓住了云计算、物联网的本质,以数据处理和数据中心建设与运维为主要业务的公司是最为贴切的投资标的。 "大数据"产业链条包含了从数据生成、数据存储、数据处理和数据展示等多个环节。完整的生态系统还应当包括大数据处理结果的应用。 "大数据"时代更多的商机来自于应用,我们认为国内企业有机会获得较大的发展空间。与大数据相关的投资标的有以下几类。 第一类是与海量数据的存储和处理相关的公司,关注拓尔思、美亚柏科、恒泰艾普、潜能恒信、天泽信息。 第二类是与数据中心建设与运营维护相关的公司,包括荣之联、天玑科技、银信科技。 第三类是与视频化应用相关的公司,包括视频监控业务为主的海康威视、大华股份、威创股份、华平股份。 第四类是与智能化和人机交互概念相关的公司,关注科大讯飞、用友软件、东方国信等。 (南方股票频道)
6. 大数据是哪类股票属什么板块成长性如何
现在还去投资股票的人都是傻子,我在国泰君安里面就做过股票讲师,没有人比我有权利解答这个问题:
股票的涨跌就是多空拼杀,买入的资金多,股票就涨,卖出的人多,股票就跌。很显然拥有大资金的人就可以轻松操控股价。国外显然不同,当用户大资金买入股票时,证监会立马就有电话询问:“你持重仓的原因是什么,而且需要自己举证,否则就按非法操控股价为由冻结资金,甚至是多倍盈利的罚单,最高以诈骗罪判刑。中国股票交易市场的制度目前还不健全,不适合散户投资,也这是为什么国外大盘涨的的时候中国大盘跌的病根所在,
大家会问,中国的股票在刚刚兴起时,很多人都大赚,为什么近几年来就没有听到谁买股票发财了呢?笔者经过多年实战和同行交流,总结出以下三条原因:
第一、机构优势
公司为了成功上市,通常需要大资金来拉动股价,按每股发行价一元计算,对做一级市商的机构来讲,他们因为量大的关系,往往每股只需0.8元~0.9元的成本。对于我们散户的股民来讲,就算第一时间入场,其实已经买了高价股,风险可想而知。
第二、内幕交易
股价的涨跌除了国家政策调控,还因公司因发展战略事项有着密切的关系,公司有重大决策之前,散户股民是不可能知道,软件公布数据的时候,已是事后。
第三、庄家操控
按一家上市公司发行一亿股,每股十元的发行价,即总市值十亿元,拥有五六亿元的个体和庄家就可以操控股价,散户就是任人宰割的羊。
如果要做投资方面的,欢迎(扣我)网络号。
7. 大数据在经济方面的应用
大数据在经济方面的应用非常广泛,现在也越来越重要,很多人很多人重视到这个数据的应用
8. 利用大数据人工智能投资股票的能代替投顾吗
投顾有各种各样的,大数据人工智能可能是没私心的。
9. 举例说明大数据在哪些方面发挥着重要作用
政府合理利用大数据,引导决策的将是基于实证的事实,政府会更有预见性、更加负责、更加开放。中国古代治国就已经有重数据的思想,如商鞅提出,“强国知十三数……欲强国,不知国十三数,地虽利,民虽众,国愈弱至削”。大数据时代,循“数”治国将更加有效。小数据时代,政府做决策更多依凭经验和局部数据,难免头痛医头、脚痛医脚。比如,交通堵塞就多修路。大数据时代,政府做决策能够从粗放型转向集约型。路堵了,利用大数据分析,可以得知哪一时间、哪一地段最容易堵,或在这一地段附近多修路,或提前预警引导居民合理安排出行,实现对交通流的最佳配置和控制,改善交通。
对于商家来说,大数据使精准营销成为可能。一个有趣的故事,是沃尔玛超市的“啤酒、尿布”现象。沃尔玛超市分析销售数据时发现,顾客消费单上和尿布一起出现次数最多的商品,竟然是啤酒。跟踪调查后发现,有不少年轻爸爸会在买尿布时,顺便买些啤酒喝。沃尔玛发现这一规律后,搭配促销啤酒、尿布,销量大幅增加。大数据时代,每个人都会“自发地”提供数据。我们的各种行为,如点击网页、使用手机、刷卡消费、观看电视、坐地铁出行、驾驶汽车,都会生成数据并被记录下来,我们的性别、职业、喜好、消费能力等信息,都会被商家从中挖掘出来,以分析商机。
大数据也将使个人受益。从生物学、医学上讲,以前生物学家只是通过对单个或几个基因的操控来观察其对生物体的影响,很难发现整体的关联。现在由于技术的发展,可以分析很多,如遗传信息、全体基因的表达量信息、蛋白质族谱信息、全基因组甲基化信息、表观遗传信息等。同时还有个人健康指标、病历、药物反应等数据。如果真能达成生物学上多维多向数据的有机融合,就能够把个人完整地描述出来,从而实现精准医疗的目的。
大数据时代,审核数据的真实性也有了更有效的手段。大数据的特征之一是多样性,不同来源、不同维度的数据之间存在一定的关联度,可以交叉验证。例如,某地的工业产值虚报了一倍,但用电量和能耗却没有达到相应的规模。这就是数据异常,很容易被系统识别出来。发现异常后,相关部门再进行复核,就能更有针对性地防止、打击数据造假。
数据是一种资源,但数据又跟煤、石油等物质性资源不一样。物质性资源不可再生,你用多了,别人就用少了,因而很难共享。数据可以重复使用、不断产生新的价值。大数据资源的使用是非恶性竞争的,共享的前提下,更能够制造双赢。从另一个角度来说,数据如果不被融合、联系在一起,也不能称之为大数据。
10. 股票大数据分析可以吗有推荐吗
在用RC智能云,很不错的