❶ java 如何实现 获取实时股票数据
一般有三种方式:
网页爬虫。采用爬虫去爬取目标网页的股票数据,去GitHub或技术论坛(如CSDN、51CTO)上找一下别人写的爬虫集成到项目中。
请求第三方API。会有专门的公司(例如网络API市场)提供股票数据,你只需要去购买他们的服务,使用他们提供的SDK,仿照demo开发实现即可。如下图所示:
❷ 如何用python 爬虫抓取金融数据
获取数据是数据分析中必不可少的一部分,而网络爬虫是是获取数据的一个重要渠道之一。鉴于此,我拾起了Python这把利器,开启了网络爬虫之路。
本篇使用的版本为python3.5,意在抓取证券之星上当天所有A股数据。程序主要分为三个部分:网页源码的获取、所需内容的提取、所得结果的整理。
一、网页源码的获取
很多人喜欢用python爬虫的原因之一就是它容易上手。只需以下几行代码既可抓取大部分网页的源码。
为了减少干扰,我先用正则表达式从整个页面源码中匹配出以上的主体部分,然后从主体部分中匹配出每只股票的信息。代码如下。
pattern=re.compile('<tbody[sS]*</tbody>')
body=re.findall(pattern,str(content)) #匹配<tbody和</tbody>之间的所有代码pattern=re.compile('>(.*?)<')
stock_page=re.findall(pattern,body[0]) #匹配>和<之间的所有信息
其中compile方法为编译匹配模式,findall方法用此匹配模式去匹配出所需信息,并以列表的方式返回。正则表达式的语法还挺多的,下面我只罗列所用到符号的含义。
语法 说明
. 匹配任意除换行符“ ”外的字符
* 匹配前一个字符0次或无限次
? 匹配前一个字符0次或一次
s 空白字符:[<空格> fv]
S 非空白字符:[^s]
[...] 字符集,对应的位置可以是字符集中任意字符
(...) 被括起来的表达式将作为分组,里面一般为我们所需提取的内容
正则表达式的语法挺多的,也许有大牛只要一句正则表达式就可提取我想提取的内容。在提取股票主体部分代码时发现有人用xpath表达式提取显得更简洁一些,看来页面解析也有很长的一段路要走。
三、所得结果的整理
通过非贪婪模式(.*?)匹配>和<之间的所有数据,会匹配出一些空白字符出来,所以我们采用如下代码把空白字符移除。
stock_last=stock_total[:] #stock_total:匹配出的股票数据for data in stock_total: #stock_last:整理后的股票数据
if data=='':
stock_last.remove('')
最后,我们可以打印几列数据看下效果,代码如下
print('代码',' ','简称',' ',' ','最新价',' ','涨跌幅',' ','涨跌额',' ','5分钟涨幅')for i in range(0,len(stock_last),13): #网页总共有13列数据
print(stock_last[i],' ',stock_last[i+1],' ',' ',stock_last[i+2],' ',' ',stock_last[i+3],' ',' ',stock_last[i+4],' ',' ',stock_last[i+5])
❸ 如何通过软件抓取新浪财经里单只股票数据
如果你是准备抓历史数据,那还不如直接使用免费的wdz程序,沪深1990年至今的全部日线历史;2000年至今十几年的5分钟数据都可以直接输出,而且可转化为各种格式。根本不用去新浪中抓取。
❹ 如何用爬虫抓取股市数据并生成分析报表
我用前嗅的forespider数据采集软件爬过股市信息的,比较简单,分析了一下历史股价,目前数据还不多没做太多分析。过几天再说
❺ 如何用爬虫抓取股市数据并生成分析报表
1. 关于数据采集
股票数据是一种标准化的结构数据,是可以通过API接口访问的(不过一般要通过渠道,开放的API有一定的局限性)。也可以通过爬虫软件进行采集,但是爬虫软件采集数据不能保证实时性,根据数据量和采集周期,可能要延迟几十秒到几分钟不等。我们总结了一套专业的爬虫技术解决方案(Ruby + Sidekiq)。能够很快实现这个采集,也可以后台可视化调度任务。
2. 关于展现
网络股票数据的展现,网页端直接通过HTML5技术就已经足够,如果对界面要求高一点,可以采用集成前端框架,如Bootstrap;如果针对移动端开发, 可以使用Ionic框架。
3. 关于触发事件
如果是采用Ruby on Rails的开发框架的话,倒是很方便了,有如sidekiq, whenever这样子的Gem直接实现任务管理和事件触发。
❻ 怎么抓取股票数据
那么中国股市的数据有没有呢?答案是肯定的,不过要按照下面的参数做些调整,下面提供全球证券交易所的资料。
上证股票是股票代码后面加上.ss,深证股票是股票代码后面加上.sz
例如:000001 = 000001.sz
深市数据链接:http://table.finance.yahoo.com/table.csv?s=000001.sz
上市数据链接:http://table.finance.yahoo.com/table.csv?s=600000.ss
上证综指代码:000001.ss,深证成指代码:399001.SZ,沪深300代码:000300.ss
下面就是世界股票交易所的网址和缩写,要查找哪个股票交易所的数据,就按照上面的格式以此类推。
上海交易所=cn.finance.yahoo.com,.SS,Chinese,sl1d1t1c1ohgv
深圳交易所=cn.finance.yahoo.com,.SZ,Chinese,sl1d1t1c1ohgv
美国交易所=finance.yahoo.com,,United States,sl1d1t1c1ohgv
加拿大=ca.finance.yahoo.com,.TO,Toronto,sl1d1t1c1ohgv
新西兰=au.finance.yahoo.com,.NZ,sl1d1t1c1ohgv
新加坡=sg.finance.yahoo.com,.SI,Singapore,sl1d1t1c1ohgv
香港=hk.finance.yahoo.com,.HK,Hong Kong,sl1d1t1c1ohgv
台湾=tw.finance.yahoo.com,.TW,Taiwan,sl1d1t1c1ohgv
印度=in.finance.yahoo.com,.BO,Bombay,sl1d1t1c1ohgv
伦敦=uk.finance.yahoo.com,.L,London,sl1d1t1c1ohgv
澳洲=au.finance.yahoo.com,.AX,Sydney,sl1d1t1c1ohgv
巴西=br.finance.yahoo.com,.SA,Sao Paulo,sl1d1t1c1ohgv
瑞典=se.finance.yahoo.com,.ST,Stockholm,sl1d1t1c1ohgv
以上方法只能提供历史数据,实时数据不能抓取,此方法由ArthurXF提供
❼ 如何使用 Yahoo Finance stock API 获取股票数据
1、通过API获取实时数据
请求地址
http://finance.yahoo.com/d/quotes.csv?s=<股票名称>&f=<数据列选项>
参数
s – 表示股票名称,多个股票之间使用英文加号分隔,如”XOM+BBDb.TO+JNJ+MSFT”,罗列了四个公司的股票:XOM, BBDb.TO, JNJ, MSFT。
f – 表示返回数据列,如”snd1l1yr”。更详细的参见雅虎股票 API f 参数对照表。
2、通过API获取历史数据
请求地址
http://ichart.yahoo.com/table.csv?s=<string>&a=<int>&b=<int>&c=<int>&d=<int>&e=<int>&f=<int>&g=d&ignore=.csv
参数
s – 股票名称
a – 起始时间,月
b – 起始时间,日
c – 起始时间,年
d – 结束时间,月
e – 结束时间,日
f – 结束时间,年
g – 时间周期。Example: g=w, 表示周期是’周’。d->’日’(day), w->’周’(week),m>’月’(mouth),v->’dividends only’一定注意月份参数,其值比真实数据-1。如需要9月数据,则写为08。
3、通过API获取深沪股票数据
雅虎的API是国际性的,支持查询国内沪深股市的数据,但代码稍微变动一下,如浦发银行的代号是:600000.SS。规则是:上海市场末尾加.ss,深圳市场末尾加.sz。
❽ 如何用python抓取股票数据
很多服务器通过浏览器发给它的报头来确认是否是人类用户,所以我们可以通过模仿浏览器的行为构造请求报头给服务器发送请求。服务器会识别其中的一些参数来识别你是否是人类用户,很多网站都会识别User-Agent这个参数,所以请求头最好带上。
有一些警觉性比较高的网站可能还会通过其他参数识别,比如通过Accept-Language来辨别你是否是人类用户,一些有防盗链功能的网站还得带上referer这个参数等等。
❾ Python 如何爬股票数据
现在都不用爬数据拉,很多量化平台能提供数据接口的服务。像比如基础金融数据,包括沪深A股行情数据,上市公司财务数据,场内基金数据,指数数据,期货数据以及宏观经济数据;或者Alpha特色因子,技术分析指标因子,股票tick数据以及网络因子数据这些数据都可以在JQData这种数据服务中找到的。
有的供应商还能提供level2的行情数据,不过这种比较贵,几万块一年吧