① 数据分析用python还是r语言
数据分析的话,我觉得都是可以采用的,因为两者来说都是有一些特点有优势也有劣势
② 学习量化选择Python还是R比较好
对于想从事数据行业的人和数据工作者来说,是学习R还是 python,哪个工具更实用一直被大家争论。python 和R是统计学中两种最流行的的编程语言,R的功能性主要是统计学家在开发时考虑的(R具有强大的可视化功能),而 Python 因为易于理解的语法被大家所接受。
在这篇文章中,我们将重点介绍R和 Python 以及它们在数据科学和统计上地位之间的差异。
关于R的介绍
Ross Ihaka 和 Robert Gentleman 于 1995 年在S语言中创造了开源语言R,目的是专注于提供更好和更人性化的方式做数据分析、统计和图形模型的语言。
起初R主要是在学术和研究使用,但近来企业界发现R也很不错。这使得中的R成为企业中使用的全球发展最快的统计语言之一。
R 的主要优势是它有一个庞大的社区,通过邮件列表,用户贡献的文档和一个非常活跃的堆栈溢出组提供支持。还有 CRAN 镜像,一个用户可以很简单地创造的一个包含R包的知识库。这些包有R里面的函数和数据,各地的镜像都是R网站的备份文件,完全一样,用户可以可以选择离你最近的镜像访问最新的技术和功能,而无需从头开发。
如果你是一个有经验的程序员,你可以不会觉得使用R可以提高效率,但是,你可能会发现学习R经常会遇到瓶颈。幸运的是现在的资源很多。
关于 Python 的介绍
Python 是由 Guido van Rossem 创建于 1991 年,并强调效率和代码的可读性。希望深入的数据分析或应用统计技术的程序员是 Python 的主要用户。
当你越需要在工程环境中工作,你会越喜欢 Python。它是一种灵活的语言,在处理一些新东西上表现很好,并且注重可读性和简单性,它的学习曲线是比较低的。
和R类似,Python 也有包,pypi 是一个 Python 包的仓库,里面有很多别人写好的 Python 库。
Python 也是一个大社区,但它是一个有点比较分散,因为它是一个通用的语言。然而,Python 自称他们在数据科学中更占优势地位:预期的增长,更新颖的科学数据应用的起源在这里。
R和 Python:数字的比较
在网上可以经常看到比较R和 Python 人气的数字,虽然这些数字往往就这两种语言是如何在计算机科学的整体生态系统不断发展,但是很难并列进行比较。主要的原因是,R仅在数据科学的环境中使用,而 Python 作为一种通用语言,被广泛应用于许多领域,如网络的发展。这往往导致排名结果偏向于 Python,而且从业者工资会较低。
R如何使用?
R 主要用于当数据分析任务需要独立的计算或分析单个服务器。这是探索性的工作,因为R有很多包和随时可用的测试,可以提供提供必要的工具,快速启动和运行的数量庞大几乎任何类型的数据分析。R甚至可以是一个大数据解决方案的一部分。
当开始使用R的时候,最好首先安装 RStudio IDE。之后建议你看看下面的流行包:
Python 如何使用?
如果你的数据分析任务需要使用 Web 应用程序,或代码的统计数据需要被纳入生产数据库进行集成时你可以使用 python,作为一个完全成熟的编程语言,它是实现算法一个伟大的工具。
虽然在过去 python 包对于数据分析还处于早期阶段,但是这些年已经有了显著改善。使用时需要安装 NumPy/ SciPy 的(科学计算)和 pandas(数据处理),以使 Python 可用于数据分析。也看看 matplotlib,使图形和 scikit-learn 机器学习。
不同于R,Python 有没有明确的非常好的 IDE。我们建议你看看 Spyder 以及 IPython 网站,看看哪一个最适合你。
R和 Python:数据科学行业的表现
如果你看一下最近的民意调查,在数据分析的编程语言方面,R是明显的赢家。
有越来越多的人从研发转向 Python。此外,有越来越多的公司使用这两种语言来进行组合。
如果你打算从事数据行业,你用好学会这两种语言。招聘趋势显示这两个技能的需求日益增加,而工资远高于平均水平。
R:优点和缺点
优点
可视化能力强
可视化通常让我们更有效地理解数字本身。R和可视化是绝配。一些必看的可视化软件包是 ggplot2,ggvis,googleVis 和 rCharts。
完善的生态系统
R 具有活跃的社区和一个丰富的生态系统。R包在 CRAN,Bioconctor 的和 Github 上。您可以通过 Rdocumentation 搜索所有的R包。
用于数据科学
R 由统计学家开发,他们可以通过R代码和包交流想法和概念,你不一定需要有计算机背景。此外企业界也越来越接受R。
缺点
R比较缓慢
R 使统计人员的更轻松,但你电脑的运行速度可能很慢。虽然R的体验是缓慢的,但是有多个包来提高的r性能:pqR,renjin,FastR, Riposte 等等。
R不容易深入学习
R 学习起来并不容易,特别是如果你要从 GUI 来进行统计分析。如果你不熟悉它,即使发现包可能会非常耗时。
Python:优点和缺点
优点
IPython Notebook
IPython Notebook 使我们更容易使用 Python 进行数据工作,你可以轻松地与同事共享 Notebook,而无需他们安装任何东西。这大大减少了组织代码,输出和注释文件的开销。可以花更多的时间做实际的工作。
通用语言
Python 是一种通用的语言,容易和直观。在学习上会比较容易,它可以加快你写一个程序的速度。此外,Python 测试框架是一个内置的,这样可以保证你的代码是可重复使用和可靠的。
一个多用途的语言
Python 把不同背景的人集合在一起。作为一种常见的、容易理解,大部分程序员都懂的,可以很容易地和统计学家沟通,你可以使用一个简单的工具就把你每一个工作伙伴都整合起来。
缺点
可视化
可视化是选择数据分析软件的一个重要的标准。虽然 Python 有一些不错的可视化库,如 Seaborn,Bokeh 和 Pygal。但相比于R,呈现的结果并不总是那么顺眼。
Python 是挑战者
Python 对于R来说是一个挑战者,它不提供必不可少的R包。虽然它在追赶,但是还不够。
最终你该学习什么呢:
由你决定!作为一个数据工作者,你需要在工作中选择最适合需要的语言。在学习之前问清楚这些问题可以帮助你:
你想解决什么问题?
什么是学习语言的净成本?
是什么在你的领域中常用的工具?
什么是其他可用工具以及如何做这些涉及到的常用工具?
③ 金融数据分析用python还是R还是matlab好
以前有过类似的问题 可以参考下:
http://www.xkyn.com/jiankang/tixing-2076112720581378468.htm
④ 数据分析一般用python还是R还是Java
企业日常数据分析:
1、如果是离线数据python会灵活一点(如设备的运维数据.), 但如果是实现数据还是用java会快一点(如ERP, MES.自动化.)
2、Java跑得更快,在WEKA上做数据分析会更“舒服”。
但python更加全面,适用性更广。
3、做统计挖掘算法分析的话用R,如果是其他用途建议学Python。适用范围广啊!
以上是几种建议方法,各有各的特点!
⑤ 数据分析用r还是python
R和Python两者谁更适合数据分析领域?在某些特定情况下谁会更有优势?还是一个天生在各方面都比另一个更好?
当我们想要选择一种编程语言进行数据分析时,相信大多数人都会想到R和Python——但是从这两个非常强大、灵活的数据分析语言中二选一是非常困难的。
我承认我还没能从这两个数据科学家喜爱的语言中选出更好的那一个。因此,为了使事情变得有趣,本文将介绍一些关于这两种语言的详细信息,并将决策权留给读者。值得一提的是,有多种途径可以了解这两种语言各自的优缺点。然而在我看来,这两种语言之间其实有很强的关联。
Stack Overflow趋势对比
上图显示了自从2008年(Stack Overflow 成立)以来,这两种语言随着时间的推移而发生的变化。
R和Python在数据科学领域展开激烈竞争,我们来看看他们各自的平台份额,并将2016与2017年进行比较:
相关推荐:《Python入门教程》
接下来我们将从适用场景、数据处理能力、任务、安装难度以及开放工具等方面详细了解这两种语言。
适用场景
R适用于数据分析任务需要独立计算或单个服务器的应用场景。Python作为一种粘合剂语言,在数据分析任务中需要与Web应用程序集成或者当一条统计代码需要插入到生产数据库中时,使用Python更好。
任务
在进行探索性统计分析时,R胜出。它非常适合初学者,统计模型仅需几行代码即可实现。Python作为一个完整而强大的编程语言,是部署用于生产使用的算法的有力工具。
数据处理能力
有了大量针对专业程序员以及非专业程序员的软件包和库的支持,不管是执行统计测试还是创建机器学习模型,R语言都得心应手。
Python最初在数据分析方面不是特别擅长,但随着NumPy、Pandas以及其他扩展库的推出,它已经逐渐在数据分析领域获得了广泛的应用。
开发环境
对于R语言,需要使用R Studio。对于Python,有很多Python IDE可供选择,其中Spyder和IPython Notebook是最受欢迎的。
热门软件包和库
下面罗列了R和Python推出的针对专业以及非专业程序员的最热门的软件包和库。
R:针对专业程序员的热门软件包
用于数据操作的 dplyr、plyr和 data table
用于字符串操作的 stringr
定期和不定期时间序列 zoo
数据可视化工具 ggvis、lattice 和 ggplot2
用于机器学习的 caret
R:针对非专业程序员的热门软件包
Rattle
R Commander
Decer
这些完整的GUI包可以实现强大的数据统计和建模功能。
Python:针对专业程序员的热门库
用于数据分析的 pandas
用于科学计算的 SciPy 和 NumPy
用于机器学习的 scikit-learn
图表库 matplotlib
statsmodels 用来探索数据,估算统计模型,并执行统计测试和单元测试
Python:针对非专业程序员的热门库
Orange Canvas 3.0是遵循GPL协议的开源软件包。它使用一些常用的Python开源库进行科学计算,包括numpy、scipy和scikit-learn。
R 和 Python 详细对比
正如本文开头提到的,R和Python之间有很强的关联,并且这两种语言日益普及。很难说哪一种更好,它们两者的整合在数据科学界激起了许多积极和协作的波澜。
总结
事实上,日常用户和数据科学家可以同时利用这两者语言,因为R用户可以在R中通过 rPython包来运行R中的Python代码,而Python用户可以通过RPy2库在Python环境中运行R代码。
⑥ 做数据分析用R还是python好
R是统计分析的专用语言。Python是一门通用语言,应用领域更广。如果专注数据分析,挖掘选用哪个差别不大,如果除了数据处理,还涉及到其他开发,则只能选Python了
⑦ python和r数据分析哪个更好
2012年的时候我们说R是学术界的主流,但是现在Python正在慢慢取代R在学术界的地位。不知道是不是因为大数据时代的到来。
Python与R相比速度要快。Python可以直接处理上G的数据;R不行,R分析数据时需要先通过数据库把大数据转化为小数据(通过groupby)才能交给R做分析,因此R不可能直接分析行为详单,只能分析统计结果。所以有人说:Python=R+SQL/Hive,并不是没有道理的。
Python的一个最明显的优势在于其胶水语言的特性,很多书里也都会提到这一点,一些底层用C写的算法封装在Python包里后性能非常高效
(Python的数据挖掘包Orange canve
中的决策树分析50万用户10秒出结果,用R几个小时也出不来,8G内存全部占满)。但是,凡事都不绝对,如果R矢量化编程做得好的话(有点小难度),会
使R的速度和程序的长度都有显著性提升。
R的优势在于有包罗万象的统计函数可以调用,特别是在时间序列分析方面,无论是经典还是前沿的方法都有相应的包直接使用。
相比之下,Python之前在这方面贫乏不少。但是,现在Python有了
pandas。pandas提供了一组标准的时间序列处理工具和数据算法。因此,你可以高效处理非常大的时间序列,轻松地进行切片/切块、聚合、对定期
/不定期的时间序列进行重采样等。可能你已经猜到了,这些工具中大部分都对金融和经济数据尤为有用,但你当然也可以用它们来分析服务器日志数据。于是,近
年来,由于Python有不断改良的库(主要是pandas),使其成为数据处理任务的一大替代方案。
做过几个实验:
1. 用python实现了一个统计方法,其中用到了ctypes,multiprocess。
之后一个项目要做方法比较,又用回R,发现一些bioconctor上的包已经默认用parallel了。(但那个包还是很慢,一下子把所有线程都用掉了,导致整个电脑使用不能,看网页非常卡~)
2. 用python pandas做了一些数据整理工作,类似数据库,两三个表来回查、匹配。感觉还是很方便的。虽然这些工作R也能做,但估计会慢点,毕竟几十万行的条目了。
3. 用python matplotlib画图。pyplot作图的方式和R差异很大,R是一条命令画点东
西,pylot是准备好了以后一起出来。pyplot的颜色选择有点尴尬,默认颜色比较少,之后可用html的颜色,但是名字太长了~。pyplot
的legend比R 好用多了,算是半自动化了。pyplot画出来后可以自由拉升缩放,然后再保存为图片,这点比R好用。
总的来说Python是一套比较平衡的语言,各方面都可以,无论是对其他语言的调用,和数据源的连接、读取,对系统的操作,还是正则表达和文字处
理,Python都有着明显优势。
而R是在统计方面比较突出。但是数据分析其实不仅仅是统计,前期的数据收集,数据处理,数据抽样,数据聚类,以及比较复杂的数据挖掘算法,数据建模等等
这些任务,只要是100M以上的数据,R都很难胜任,但是Python却基本胜任。
结合其在通用编程方面的强大实力,我们完全可以只使用Python这一种语言去构建以数据为中心的应用程序。
但世上本没有最好的软件或程序,也鲜有人能把单一语言挖掘运用到极致。尤其是很多人早先学了R,现在完全不用又舍不得,所以对于想要学以致用的人来说,如果能把R和Python相结合,就更好不过了。
⑧ 求教大神,做数据分析是r方便还是python方便
2013年之前R是学术界的主流,但是现在Python正在慢慢取代R在学术界的地位。所以建议使用python来完成数据分析
⑨ 数据分析师用r和python哪个好
python更好,R语言比较局限,并且分析的话python的扩展性更强,并且能够嵌入到APP内进行机器学习算法的计算,可以实现实时推荐系统。
⑩ python相比于R,在数据分析上有哪些优势
R语言对大的数据流处理很一般,因为整个r-base只有几十兆。
Pyhton有自己的pandas库和numpy库, 结合matplotlib可以实现大数据的处理和数据的可视化。