『壹』 大数据能否预测彩票结果或者股票走势呢
理论上可以做到,但是彩票数据样本太少,缺失的数据太多,很难完全分析。股票的话虽然降噪不好处理,但是样本就是整体,是可以通过一定的技术手段进行降噪分析。这一点国内做的比较好的量化交易机构都在研究这方面的问题。比如说策略炒股通,我认真研究过他们的算法,在国内的技术级别上算是比较好的。
『贰』 股票的估值模型越复杂,引用的大数据越多,获得的估值结果就越精确
股票估值的变量很多,从原理上说,引用的数据越多,估值结果就越精确。但是引用的每一个数据都不是准确的,所以引用再多的数据也是没用的。
『叁』 为什么jm33.cn中说股票分析可用大数据来预测而多人都觉得股票是被操纵的,没有预测的可能
股票的预测只是一个概率问题,实际上即便是使用大数据也无法解决其中的偶然因素造成的影响,所以没有100%的准确。
『肆』 股票风险预测时,如何才能知道预测结果是否正确
随着机器学习和人工智能的兴起,预测:只需几行代码,就可以在初露头角的数据爱好者处轻松访问最新模型,且他们已经准备好随时攻克可能遇到的一切任务。
但是一知半解是危险的,虽然机器学习的大部分可以归因于统计和编程,但同样重要的是领域知识,但它往往被忽略。这一点在投资领域最为明显。
金融时间序列数据的信噪比一直都非常低,这种细微差别令人难以置信,从业人员花费了大量的精力来尝试实现难以捉摸的目标,但只有少数成功。因此,需要对数据进行更深入的了解,并且找出其成功的共通之处。
很多项目都是从选择一只股票开始的,这只股票通常是苹果(Apple)或亚马逊(Amazon)等科技公司的股票,原因很简单,这些公司众所周知,并在消费者的日常生活中根深蒂固。
这是有问题的,因为选股不是一个任意的过程,它是投资决策过程的一部分,本身需要一个模型。
以苹果为例,如果我们将其表现与更广泛的标准普尔500指数(SP 500)进行对比,我们会发现苹果的表现比该指数高出近60%。
乍一看,EWMA对标普500指数的预测非常准确,但如果我们仔细观察市场下滑的时期,就会发现情况并非看上去那样。
尽管蓝线和橙线似乎紧密相连,但EWMA策略仅能融合过去的信息,即它只包含了过去的信息,无法应对日内波动的信息,因此往往导致它预测上涨,但实际是下跌,反之亦然。在此期间采取这种策略,其表现将逊于标普500指数。
结论
在开始一个股票预测项目之前,特别是在你打算投入实际资金的项目之前,先对这个主题做一些研究并了解数据是有好处的。
如果结果好得令人难以置信。由于参与者的数量越来越多,而且参与者的水平也越来越高,市场在价格发现方面极其有效,尤其是在股票方面。
尽管这可能不会排除潜在机会的可能性,但这意味着需要比即时可用的算法和标准预处理技术更多的努力才能找到它。
『伍』 用大数据炒股,靠谱吗
因为最近在考察几个量化交易平台,或许正好能够回答你的这个问题。
在国外现在量化交易已经非常非常的普及,但是据说在国内只有不到5%,似乎是国内散户太多的原因。
而量化交易就是能够通过模型预测未来一段时间的走势,从而不断去调整,购买较大胜率的股票、期货或者大宗商品。
某种程度上来说,这些大数据预测相对于国内的赌徒心理还是有更高的成功率的。
当然,也不能太迷信数据,数据是死的,而人性莫测。在国内,即使你个股再好,还是看出现跑不赢大盘的局面,而且有时候还得考虑人的情绪、政策等等。不过,如果能够坚持,大数据还是相对靠谱的。观点仅供参考,投资需谨慎。
『陆』 大数据可以在哪些领域实现预测价值
和原来统计抽样数据不同,大数据需要持续数据,来反应相对完整的过程,而且整个过程是一个相对稳定的规律性状态。
这样通过数据比对,一方面能去除偶然性和外界环境干扰带来的噪点,另一方面通过数据积累,能把规律的异常波动和结果之间找到数据对应关系,来实现对异常变化的情况分析和预测。
只要数据全面和连续,异常变化的征兆就可以被发现。传统的统计抽样数据需要从数据中进行抽样,通过单个数据的精确来反应当时状态,但是无法进行规律的分析。
所以大数据的原理是,基于每一种非常规的变化,在事前一定有征兆体现。没有任何一件事情是突发的,这和佛教哲学中的因果道理是一样的,每一件事的发生是可以被追寻脉络的。
利用大数据的预测和分析,就建立在可以捕捉和分析这些反应事物变化的征兆上,而最容易捕捉这种征兆的领域,一定是原本有稳定规律的领域。
我们从现实生活中举几个例子。
1、股票市场
是否能用大数据的方式,来预测股票的涨跌呢?如果不讨论个股情况,从理论上讲在美国可以,在中国很难。
美国股票市场是可以双向盈利的,当股票价格脱离价值时,另一股资金力量就会反向操作来盈利。而中国的股票市场则不同,股票只有涨才能盈利,这样的规则就会吸引一些游资利用信息不对等的状况,人为改变股票市场规律,没有相对的稳定状态则很难被预测,或者说变量大到捕捉分析成本过高。
2、商品价格
单次性销售的商品价格是能够被预测的,因为任何商品的销售无法脱离赚钱这个根本,而且不同渠道成本和收益需求在竞争充分的环境下是相对稳定的,与价格相关的变量相对固定,所以价格可以预测。
但是如果商品有后续服务等持续性收费,或产品盈利不是唯一的需求(比如:产品新上市推广、打击竞争对手新上市商品等)时,则此商品价格变得不可预测,因为它脱离了一个稳定的状态。
3、人的健康状况
慢性病是可以被预测的。因为人体的体征变化是呈固定的变化规律的,慢性病形成的过程中,体征变化规律也呈现持续性异常。所以在慢性病形成的过程,就可以对异常的体征变化规律进行分析。
急性病是很难预测的,因为是外界因素带来的突变,体征数据变化规律异常是应激反应,属于突变的过程,尤其随机性,则预测成本过高,但可以发生后被分析出来。
1、数据波动规律不因外界随机干扰而不可测影响,可以用固定维度的变量建立基准规律;
2、持续采集和分析数据的成本要小于预测带来的收益;
3、有异常状况和不同结果的对应关系。
『柒』 大数据预测股票靠谱吗
要进行人工分析,不能完全依靠数据
『捌』 可以用我独创的指标预测到股票大盘的底和顶,是我自己研究了2年才研究出来的,顶底误差50点左右。
不会吧,真的这么牛,那你干嘛不利用你的这个赚钱呢,为什么还会缺乏资金呢,真是奇怪??如果找你这样的话,你就1000元钱的话,你也赚好多了呀
『玖』 假如一个公司的股票价值的预测值比现在的值要低,那么是高估还是低估了公司的股票。最好详细说明一下。
如果该股票目前的价格低于统计学上的预测价格,那么这只股票被低估了,相应的操作就是买进,等到股价恢复正常后卖出,这种操作其实就是寻找市场的差错。这个预测价格有多种模型可以使用,本人认为最可靠的是统计该股票同行业同规模企业的平均价格。
『拾』 大数据能不能预测股市
大数据对于很多的地方都是非常有用的,但是,是否也有大数据不能做到的?我觉得很多时候,大数据只能说作为一个参考的方向,并不能准确的作出判断,或者给出答案。首先大数据是一个有科学根据的一个参考物,因为有大量的数据,有大量的参考物,所以,这件事情结果跟大数据一致的概率变得会跟大数据所统计的相差不远,这就是我们的大数据拥有的功能。
我们的股市,说实话我以前的工作是金融方面的也接触过股市,对于股市的话,首先影响我们股市的一些因素有哪些?从宏观来说,像国家的一些政策调控,包括我们公司的一些政策变化,股东的一些变动,或者说我们现在在整个股市来说什么样的一个趋势。
我们如果从技术层面,就是可以通过我们的一些k线图,或者我们的一些kdj指标,很多的一些分析股票的一些指标来判断,当然这些指标的话并不是百分之百,都是金钱。而是说这些指标,其实也就是通过一些大量的,我们以前的历史数据,其实都是已经是历史性的,所以总结出来的这样一个图案,便于我们能进行分析。
这样一个指标的话,其实跟我们的大数据就非常的类似,我们说大数据到底能不能预测故事?这个真的不能具体的回答,因为预测这个事情也就是说对于未来的股市的一个判断,这其实是很难的,我们很多的时候看到的都只是表面上的,大数据来说,他可以给出一个方向,或者能够得出的结论跟未来行情的变化正确的概率是非常高的,但是我们不能百分之百肯定,他得出的结论是正确的,所以大数据他可以预测股市一个大致方向,但不不能保证他预测的是正确的,可以作为一个参考。